Most linked-to pages
Jump to navigation
Jump to search
Showing below up to 37 results in range #1 to #37.
View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)
- Introduction to PK modeling using MLXPlore - Part I (8 links)
- Modeling the individual parameters (8 links)
- Modeling the observations (8 links)
- The SAEM algorithm for estimating population parameters (8 links)
- Continuous data models (8 links)
- What is a model? A joint probability distribution! (7 links)
- Models for count data (7 links)
- Model for categorical data (7 links)
- Stochastic differential equations based models (6 links)
- The Metropolis-Hastings algorithm for simulating the individual parameters (6 links)
- Joint models (6 links)
- Models for time-to-event data (6 links)
- Model with covariates (5 links)
- Template:OutlineTextL (5 links)
- Gaussian models (5 links)
- Hidden Markov models (5 links)
- Additional levels of variability (5 links)
- Mixture models (5 links)
- The individual approach (5 links)
- Estimation of the observed Fisher information matrix (5 links)
- Extension to multivariate distributions (5 links)
- Extensions (4 links)
- Visualization (4 links)
- Description, representation and implementation of a model (3 links)
- Estimation (3 links)
- Estimation of the log-likelihood (3 links)
- Introduction & notation (3 links)
- Model evaluation (3 links)
- Introduction and notation (3 links)
- Simulation (2 links)
- Covariate models (2 links)
- Introduction to PK modeling using MLXPlore - Part II (2 links)
- The covariate model (2 links)
- Template:ExampleWithTable1bis (2 links)
- Categorical data models (2 links)
- Template:ExampleWithTable 4 (2 links)
- Count data models (2 links)