Estimation of the observed Fisher information matrix
$ \def\ieta{m} \def\Meta{M} \def\imh{\ell} \def\ceta{\tilde{\eta}} \def\cpsi{\tilde{\psi}} \def\transpose{t} \newcommand{\Dt}[1]{\partial_\theta #1} \newcommand{\DDt}[1]{\partial^2_{\theta} #1} \newcommand{\cov}[1]{\mbox{Cov}\left(#1\right)} \def\jparam{j} \newcommand{\Dphi}[1]{\partial_\phi #1} \newcommand{\Dpsi}[1]{\partial_\psi #1} \def\llike{\cal LL} \newcommand{\argmin}[1]{ \mathop{\rm arg} \mathop{\rm min}\limits_{#1} } \newcommand{\argmax}[1]{ \mathop{\rm arg} \mathop{\rm max}\limits_{#1} } \newcommand{\nominal}[1]{#1^{\star}} \newcommand{\psis}{\psi{^\star}} \newcommand{\phis}{\phi{^\star}} \newcommand{\hpsi}{\hat{\psi}} \newcommand{\hphi}{\hat{\phi}} \newcommand{\teps}{\varepsilon} \newcommand{\limite}[2]{\mathop{\longrightarrow}\limits_{\mathrm{#1}}^{\mathrm{#2}}} \newcommand{\DDt}[1]{\partial^2_\theta #1} \def\cpop{c_{\rm pop}} \def\Vpop{V_{\rm pop}} \def\iparam{l} \newcommand{\trcov}[1]{#1} \def\bu{\boldsymbol{u}} \def\bt{\boldsymbol{t}} \def\bT{\boldsymbol{T}} \def\by{\boldsymbol{y}} \def\bx{\boldsymbol{x}} \def\bc{\boldsymbol{c}} \def\bw{\boldsymbol{w}} \def\bz{\boldsymbol{z}} \def\bpsi{\boldsymbol{\psi}} \def\bbeta{\beta} \def\aref{a^\star} \def\kref{k^\star} \def\model{M} \def\hmodel{m} \def\mmodel{\mu} \def\imodel{H} \def\thmle{\hat{\theta}} \def\ofim{I^{\rm obs}} \def\efim{I^{\star}} \def\Imax{\rm Imax} \def\probit{\rm probit} \def\vt{t} \def\id{\rm Id} \def\teta{\tilde{\eta}} \newcommand{\eqdef}{\mathop{=}\limits^{\mathrm{def}}} \newcommand{\deriv}[1]{\frac{d}{dt}#1(t)} \newcommand{\pred}[1]{\tilde{#1}} \def\phis{\phi{^\star}} \def\hphi{\tilde{\phi}} \def\hw{\tilde{w}} \def\hpsi{\tilde{\psi}} \def\hatpsi{\hat{\psi}} \def\hatphi{\hat{\phi}} \def\psis{\psi{^\star}} \def\transy{u} \def\psipop{\psi_{\rm pop}} \newcommand{\psigr}[1]{\hat{\bpsi}_{#1}} \newcommand{\Vgr}[1]{\hat{V}_{#1}} \def\pmacro{\text{p}} \def\py{\pmacro} \def\pt{\pmacro} \def\pc{\pmacro} \def\pu{\pmacro} \def\pyi{\pmacro} \def\pyj{\pmacro} \def\ppsi{\pmacro} \def\ppsii{\pmacro} \def\pcpsith{\pmacro} \def\pcpsiiyi{\pmacro} \def\pth{\pmacro} \def\pypsi{\pmacro} \def\pcypsi{\pmacro} \def\ppsic{\pmacro} \def\pcpsic{\pmacro} \def\pypsic{\pmacro} \def\pypsit{\pmacro} \def\pcypsit{\pmacro} \def\pypsiu{\pmacro} \def\pcypsiu{\pmacro} \def\pypsith{\pmacro} \def\pypsithcut{\pmacro} \def\pypsithc{\pmacro} \def\pcypsiut{\pmacro} \def\pcpsithc{\pmacro} \def\pcthy{\pmacro} \def\pyth{\pmacro} \def\pcpsiy{\pmacro} \def\pz{\pmacro} \def\pw{\pmacro} \def\pcwz{\pmacro} \def\pw{\pmacro} \def\pcyipsii{\pmacro} \def\pyipsii{\pmacro} \def\pcetaiyi{\pmacro} \def\pypsiij{\pmacro} \def\pyipsiONE{\pmacro} \def\ptypsiij{\pmacro} \def\pcyzipsii{\pmacro} \def\pczipsii{\pmacro} \def\pcyizpsii{\pmacro} \def\pcyijzpsii{\pmacro} \def\pcyiONEzpsii{\pmacro} \def\pcypsiz{\pmacro} \def\pccypsiz{\pmacro} \def\pypsiz{\pmacro} \def\pcpsiz{\pmacro} \def\peps{\pmacro} \def\petai{\pmacro} \def\psig{\psi} \def\psigprime{\psig^{\prime}} \def\psigiprime{\psig_i^{\prime}} \def\psigk{\psig^{(k)}} \def\psigki{\psig_i^{(k)}} \def\psigkun{\psig^{(k+1)}} \def\psigkuni{\psig_i^{(k+1)}} \def\psigi{\psig_i} \def\psigil{\psig_{i,\ell}} \def\phig{\phi} \def\phigi{\phig_i} \def\phigil{\phig_{i,\ell}} \def\etagi{\eta_i} \def\IIV{\Omega} \def\thetag{\theta} \def\thetagk{\theta_k} \def\thetagkun{\theta_{k+1}} \def\thetagkunm{\theta_{k-1}} \def\sgk{s_{k}} \def\sgkun{s_{k+1}} \def\yg{y} \def\xg{x} \def\qx{p_x} \def\qy{p_y} \def\qt{p_t} \def\qc{p_c} \def\qu{p_u} \def\qyi{p_{y_i}} \def\qyj{p_{y_j}} \def\qpsi{p_{\psi}} \def\qpsii{p_{\psi_i}} \def\qcpsith{p_{\psi|\theta}} \def\qth{p_{\theta}} \def\qypsi{p_{y,\psi}} \def\qcypsi{p_{y|\psi}} \def\qpsic{p_{\psi,c}} \def\qcpsic{p_{\psi|c}} \def\qypsic{p_{y,\psi,c}} \def\qypsit{p_{y,\psi,t}} \def\qcypsit{p_{y|\psi,t}} \def\qypsiu{p_{y,\psi,u}} \def\qcypsiu{p_{y|\psi,u}} \def\qypsith{p_{y,\psi,\theta}} \def\qypsithcut{p_{y,\psi,\theta,c,u,t}} \def\qypsithc{p_{y,\psi,\theta,c}} \def\qcypsiut{p_{y|\psi,u,t}} \def\qcpsithc{p_{\psi|\theta,c}} \def\qcthy{p_{\theta | y}} \def\qyth{p_{y,\theta}} \def\qcpsiy{p_{\psi|y}} \def\qcpsiiyi{p_{\psi_i|y_i}} \def\qcetaiyi{p_{\eta_i|y_i}} \def\qz{p_z} \def\qw{p_w} \def\qcwz{p_{w|z}} \def\qw{p_w} \def\qcyipsii{p_{y_i|\psi_i}} \def\qyipsii{p_{y_i,\psi_i}} \def\qypsiij{p_{y_{ij}|\psi_{i}}} \def\qyipsi1{p_{y_{i1}|\psi_{i}}} \def\qtypsiij{p_{\transy(y_{ij})|\psi_{i}}} \def\qcyzipsii{p_{z_i,y_i|\psi_i}} \def\qczipsii{p_{z_i|\psi_i}} \def\qcyizpsii{p_{y_i|z_i,\psi_i}} \def\qcyijzpsii{p_{y_{ij}|z_{ij},\psi_i}} \def\qcyi1zpsii{p_{y_{i1}|z_{i1},\psi_i}} \def\qcypsiz{p_{y,\psi|z}} \def\qccypsiz{p_{y|\psi,z}} \def\qypsiz{p_{y,\psi,z}} \def\qcpsiz{p_{\psi|z}} \def\qeps{p_{\teps}} \def\qetai{p_{\eta_i}} \def\neta{n_\eta} \def\ncov{M} \def\npsi{n_\psig} \def\beeta{\eta} \def\logit{\rm logit} \def\transy{u} \def\so{O} \newcommand{\prob}[1]{ \mathbb{P}\left(#1\right)} \newcommand{\probs}[2]{ \mathbb{P}_{#1}\left(#2\right)} \newcommand{\esp}[1]{\mathbb{E}\left(#1\right)} \newcommand{\esps}[2]{\mathbb{E}_{#1}\left(#2\right)} \newcommand{\var}[1]{\mbox{Var}\left(#1\right)} \newcommand{\vars}[2]{\mbox{Var}_{#1}\left(#2\right)} \newcommand{\std}[1]{\mbox{sd}\left(#1\right)} \newcommand{\stds}[2]{\mbox{sd}_{#1}\left(#2\right)} \newcommand{\corr}[1]{\mbox{Corr}\left(#1\right)} \newcommand{\Rset}{\mbox{$\mathbb{R}$}} \newcommand{\Yr}{\mbox{$\mathcal{Y}$}} \newcommand{\teps}{\varepsilon} \newcommand{\like}{\cal L} \newcommand{\logit}{\rm logit} \newcommand{\transy}{u} \newcommand{\repy}{y^{(r)}} \newcommand{\brepy}{\boldsymbol{y}^{(r)}} \newcommand{\vari}[3]{#1_{#2}^{{#3}}} \newcommand{\dA}[2]{\dot{#1}_{#2}(t)} \newcommand{\nitc}{N} \newcommand{\itc}{I} \newcommand{\vl}{V} \newcommand{tstart}{t_{start}} \newcommand{tstop}{t_{stop}} \newcommand{\one}{\mathbb{1}} \newcommand{\hazard}{h} \newcommand{\cumhaz}{H} \newcommand{\std}[1]{\mbox{sd}\left(#1\right)} \newcommand{\eqdef}{\mathop{=}\limits^{\mathrm{def}}} \def\mlxtran{\text{MLXtran}} \def\monolix{\text{Monolix}} $
Contents
Some preliminary notations
Let $\theta$ be the set of population parameters. We assume that $\theta$ takes its values in $\Theta$, an open subset of $\Rset^m$.
Let $f : \Theta \to \Rset$ be a twice differentiable function of $\theta$. We will denote $\Dt{f(\theta)} = (\partial f(\theta)/\partial \theta_j, 1 \leq j \leq m) $ the gradient of $f$ (i.e. the vector of partial derivatives of $f$) and $\DDt{f(\theta)} = (\partial^2 f(\theta)/\partial \theta_j\partial \theta_k, 1 \leq j,k \leq m) $ the Hessian of $f$ (i.e. the square matrix of second-order partial derivatives of $f$).
Estimation of the observed F.I.M. using a stochastic approximation
The observed Fisher information matrix (F.I.M.) is a function of $\theta$ defined as
\(\begin{eqnarray}
I(\theta) &=& -\DDt{\log (\like(\theta;\by))} \\
&=& -\DDt{\log (\py(\by;\theta))}
\end{eqnarray}\)
|
(1) |
Due to the complex expression of the likelihood, $I(\theta)$ has no closed form expression. It is however possible to estimate it using a stochastic approximation procedure, based on Louis' formula:
where
$\Dt{\log (\pmacro(\by,\bpsi;\theta))}$ is defined as a combination of conditional expectations. Each of these conditional expectations can be estimated by Monte-Carlo, or equivalently approximated using a stochastic approximation algorithm.
We can then draw a sequence $(\psi_i^{(k)})$ using a Metropolis-Hasting algorithm and estimate the observed F.I.M on-line. At iteration $k$ of the algorithm:
- $\textbf{Simulation-step}$: for $i=1,2,\ldots N$, draw $\psi_i^{(k)}$ from $m$ iterations of the Metropolis-Hastings algorithm described in The Metropolis-Hastings algorithm for simulating the individual parameters with $\pmacro(\psi_i |y_i ;{\theta})$ as limiting distribution.
- $\textbf{Stochastic approximation}$: update $D_k$, $G_k$ and $\Delta_k$ according to the following recurrent relations:
- where $(\gamma_k)$ is a decreasing sequence of positive numbers such that $\gamma_1=1$, $ \sum_{k=1}^{\infty} \gamma_k = \infty$ and $\sum_{k=1}^{\infty} \gamma_k^2 < \infty$.
- $\textbf{Estimation-step}$: update the estimate $H_k$ of the F.I.M. according to
Implementation of this algorithm requires therefore to compute the first and second derivatives of
Assume first that the joint distribution of $\by$ and $\bpsi$ decomposes as
\(
\pypsi(\by,\bpsi;\theta) = \pcypsi(\by | \bpsi)\ppsi(\bpsi;\theta).
\)
|
(2) |
Such assumption means that, for any $i=1,2,\ldots N$, all the components of $\psi_i$ are random and that there exists a sufficient statistics ${\cal S}(\bpsi)$ for the estimation of $\theta$. It is then enough to compute the first and second derivatives of $\log (\pmacro(\bpsi;\theta))$ for estimating the F.I.M. This can be done relatively simply in a closed form when the individual parameters are normally distributed (eventually up to a transformation $h$).
If some component of $\psi_i$ has no variability, (2) does not hold anymore but we will decompose $\theta$ into $(\theta_y,\theta_\psi)$ such that
We will then need to compute the first and second derivatives of $\log(\pcyipsii(y_i |\psi_i ; \theta_y))$ and $\log(\ppsii(\psi_i;\theta_\psi))$. Derivatives of $\log(\pcyipsii(y_i |\psi_i ; \theta_y))$ that don't have closed form expressions can be obtained by central differences.
Estimation of the F.I.M. using a linearization of the model
Consider here a model for continuous data, using the $\phi$-parametrization for the individual parameters:
Let $\hphi_i$ be some predicted value of $\phi_i$ ($\hphi_i$ can be for instance the estimated mean or the estimated mode of the conditional distribution $\pmacro(\phi_i |y_i ; \hat{\theta})$).
We can therefore linearize the model for the observations $(y_{ij}, 1\leq j \leq n_i)$ of individual $i$ around the vector of predicted individual parameters. Let $\Dphi{f(t , \phi)}$ be the row vector of derivatives of $f(t , \phi)$ with respect to $\phi$. Then,
We can then approximate the marginal distribution of the vector $y_i$ as a normal distribution:
\(
y_{i} \approx {\cal N}\left(f(t_{i} , \hphi_i) + \Dphi{f(t_{i} , \hphi_i)} \, (\phi_{\rm pop} - \hphi_i) ,
\Dphi{f(t_{i} , \hphi_i)} \Omega \Dphi{f(t_{i} , \hphi_i)}^{\transpose} + g(t_{i} , \hphi_i)\Sigma_{n_i} g(t_{ij} , \hphi_i)^{\transpose} \right).
\)
|
(5) |
where $\Sigma_{n_i}$ is the variance-covariance matrix of $\teps_{i,1},\ldots,\teps_{i,n_i})$. If the $\teps_{ij}$'s are {\id i.i.d}, then $\Sigma_{n_i}$ is the identity matrix.
We can equivalently use the original $\psi$-parametrization using the fact that $\phi_i=h(\psi_i)$. Then,
where $J_h$ is the Jacobian of $h$.
We can then approximate the observed log-likelihood ${\llike}(\theta) = \log({\like}(\theta;\by))=\sum_{i=1}^N \log(\pyi(y_i;\theta))$ using this normal approximation. We can also derive the F.I.M by computing the matrix of second-order partial derivatives of ${\llike}(\theta)$.
Except for very simple models, computing these second-order order derivatives in a closed form is not straightforward. Then, finite difference can be used for approximating numerically these quantities. We can use for instance a central difference approximation of the second derivative of ${\llike}(\theta)$:
Let $\nu>0$. For $j=1,2,\ldots, m$, let $\nu^{(j)}=(\nu^{(j)}_{k}, 1\leq k \leq m)$ be the $m$-vector such that
Then, for $\nu$ small enough,
\(\begin{eqnarray}
\partial_{\theta_j}{ {\llike}(\theta)} &\approx& \displaystyle{ \frac{ {\llike}(\theta+\nu^{(j)})- {\llike}(\theta-\nu^{(j)})}{2\nu} } \ , \\
\partial^2_{\theta_j,\theta_k}{ {\llike}(\theta)} &\approx& \displaystyle{ \frac{ {\llike}(\theta+\nu^{(j)}+\nu^{(k)})-{\llike}(\theta+\nu^{(j)}-\nu^{(k)})
-{\llike}(\theta-\nu^{(j)}+\nu^{(k)})+{\llike}(\theta-\nu^{(j)}-\nu^{(k)})}{4\nu^2} } .
\end{eqnarray}\)
|
(6) |