Difference between revisions of "Overview"

From Popix
Jump to navigation Jump to search
m
m
Line 9: Line 9:
  
 
The classical [[Media:individualModel.pdf|''individual approach'']]  derives a model for a unique individual.
 
The classical [[Media:individualModel.pdf|''individual approach'']]  derives a model for a unique individual.
 +
 +
 +
:: <math>x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2)y = 0</math>
  
  
 
* Predicted concentration at time $t$:
 
* Predicted concentration at time $t$:
 
\begin{equation}
 
\begin{equation}
\left
 
 
f(t ; V,k) = \frac{D}{V} \ e^{-k \, t}
 
f(t ; V,k) = \frac{D}{V} \ e^{-k \, t}
 
\end{equation}
 
\end{equation}

Revision as of 14:13, 1 February 2013

Data: concentrations at times $0, 1, \ldots 15$, from 6 patients who received each 100 mg at time $t=0$ (bolus intravenous):


Goal of modelling: describe the variability of the data (structural, intra $\&$ inter variabilities) using a statistical model.


The classical individual approach derives a model for a unique individual.


\[x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2)y = 0\]


  • Predicted concentration at time $t$:

\begin{equation} f(t ; V,k) = \frac{D}{V} \ e^{-k \, t} \end{equation}

  • Observed concentration at time $t_j$, $j=1, 2, \ldots, 15$:

\begin{equation} y_j = f(t_j ; V,k) + \varepsilon_j \end{equation}


Observed concentrations from individual 1 and predicted concentration profile obtained with $V=10.5$ and $k=0.279$:

Intro2.png