Epistémologie de l'informatique : Différence entre versions

De Sciencinfolycee
Aller à : navigation, rechercher
m (Page créée avec « {{Ressource |URL=http://specif2011.iut2.upmf-grenoble.fr/index.php?dossier_nav=670 |Titre=Epistémologie de l'informatique |Auteur(s)=Dowek, Gilles; |SiloRole=auteur; |S... »)
 
 
(31 révisions intermédiaires par le même utilisateur non affichées)
Ligne 2 : Ligne 2 :
 
|URL=http://specif2011.iut2.upmf-grenoble.fr/index.php?dossier_nav=670
 
|URL=http://specif2011.iut2.upmf-grenoble.fr/index.php?dossier_nav=670
 
|Titre=Epistémologie de l'informatique
 
|Titre=Epistémologie de l'informatique
|Auteur(s)=Dowek, Gilles;  
+
|Auteur(s)=Dowek, Gilles;
|SiloRole=auteur;  
+
|SiloRole=auteur;
 +
|SiloNotes=51' 16"
 
|SiloLangue=fre
 
|SiloLangue=fre
|Résumé=En quoi l'informatique est une science ? Et justement une science et une technologie. Une conférence qui permet de donner quelques clés sur cette question.
+
|Résumé=Le conférencier donne quelques clés sur la question de savoir en quoi l'informatique est une science et, justement, une science et une technologie? Et d'abord, la philosophie des sciences apporte-t-elle quelque chose à la science? Oui, si l'on prend en considération les questions soulevées par la problématique de la calculabilité. La thèse de Church de 1936, démontrée indépendamment par Turing, selon laquelle le problème de l'arrêt est incalculable, et donc indécidable, définit la notion de fonction calculable, puis démontre qu'une certaine fonction h, qui indique que la machine de Turing termine ou pas, n'est pas calculable. Se pose alors une autre question qui fait de cette thèse une thèse de philosophie des sciences : cette notion formelle de calculabilité est-elle la vraie notion intuitive de calculabilité? Question philosophique que l'on retrouve avec les géométries non euclidiennes.  Ces interrogations a posteriori se justifient par la multiplicité de définitions montrées équivalentes, l'absence de contre-exemple (argument empirique), et enfin, pour une meilleure raison, le précédent Ackermann, dans les années 1920, selon lequel  la notion de fonctions primitives récursives est tenue pour la bonne notion de fonction calculable jusqu'à  la preuve advenue du contraire. La formulation de la thèse de Church sur la réalité du calcul au-delà des apparences a manifestement un relent métaphysique et, par défaut, n'est donc pas une thèse scientifique, mais cette vision de la science est aussi un peu naïve. Historiquement, la philosophie précède la science et l'introduit. La science ne s'intéresse qu'aux questions bien posées, mais la route est longue, avec toute une phase proto-scientifique. On peut donc légitimement penser que les questions de philosophie des sciences impactent les sciences elles-mêmes. En revanche, la classification des sciences fournit une toute autre réponse. A plus d'un siècle et demi d'écart, les quarante sections du CNRS apportent quelques modifications à la classification d'Auguste Comte, en omettant la philosophie positive qui couronnait l'édifice de ce dernier, et en rattachant à la physique les sections de géophysique et d'astrophysique, que Comte insérait, sous les noms de géologie et d'astronomie, entre la chimie et la biologie. Elles distinguent de plus quatre sections de physique appliquée, dont l'informatique. On peut définir une science par l'objet étudié, ou le type de jugements de vérité des propositions, ou encore par la méthode utilisée. Les mathématiques et les sciences de la nature trouvent dans ces critères les formes de leur opposition. Or, l'informatique n'est ni une science de type mathématique ni une science de la nature, à la fois irréductible (aux limites de) aux mathématiques (rapport ontologique), et aux sciences de la nature (rapport méthodologique). Mais ce qui définit le mieux l'informatique, ce sont ses concepts : algorithme, machine, langage et information, découverts par itérations successives. Chacun d'entre eux existe depuis plus ou moins longtemps, de deux siècles pour le machinisme à la nuit des temps pour le langage, mais ce qui fait la spécificité de l'informatique c'est qu'ils marchent ensemble. La pensée informatique elle-même est structurée par ces concepts, voire par le refus de certains d'entre eux, en quelque sorte une automutilation de l'informatique au profit des mathématiques et au détriment de la dimension technique, point de vue soutenu par Djikstra et par certains mathématiciens, dont Jean Dieudonné est représentatif, mais un enseignement réduit à l'algorithmique, amputé des trois autres concepts, serait regrettable. Il y a là un préjugé selon lequel la technique ne fait pas partie de la culture (Platon, Nietzsche, Heidegger...). Dans la technique, on comprend le calcul, rejeté par Saint-Exupéry dans sa caricature du businessman, et l'écriture d'ailleurs issue de la comptabilité, Platon privilégiant la tradition orale des prêtres, rejet qui est aussi celui d'Hannah Arendt. On peut faire remonter les racines de ce préjugé à la trifonctionnalité des cultures [indo-]européennes anciennes chère à Dumézil. Dans ce sens, on peut dire que l'informatique rétablit la technique au centre de la culture.
 
|Catégorie=Cours Généraux d'ISN
 
|Catégorie=Cours Généraux d'ISN
 +
|Mots-clés contrôlés=informatique : discipline; TIC (technologies de l’information et de la communication); épistémologie; théorie de la calculabilité en informatique théorique; mathématiques : discipline; algorithmique; architecture de machine informatique;
 +
|SiloTypeDocumentaire=image en mouvement
 +
|SiloTypologieGenerale=conférence
 +
|Date=2011/01/01
 +
|SiloStructure=atomique
 +
|SiloNiveauAgregation=1.Le plus petit niveau (grain)
 +
|Format=technologie X-TEK
 
|SiloTypePedagogique=cours / présentation
 
|SiloTypePedagogique=cours / présentation
 
|SiloPublicCible=enseignant
 
|SiloPublicCible=enseignant
 
|SiloUtilisationPédagogique=Pour permettre aux enseignants de replacer l'informatique dans le contexte scientifique qui est le sien.
 
|SiloUtilisationPédagogique=Pour permettre aux enseignants de replacer l'informatique dans le contexte scientifique qui est le sien.
|Evaluateur=vthierry
+
|SiloDroit=IUT 2-Grenoble
|Statut d'évaluation=validée
+
|SiloRelation=est une partie de
 +
|SiloRelationURL=http://specif2011.iut2.upmf-grenoble.fr/index.php?dossier_nav=651
 +
|SiloRelationDescription=Plateforme congrès Specif (Société des Personnels Enseignants et Chercheurs en Informatique de France) 2011.
 +
|Evaluateur=vthierry; DB
 +
|Statut d'évaluation=publiée
 
}}
 
}}

Version actuelle datée du 15 novembre 2013 à 14:14

Section Description
URL http://specif2011.iut2.upmf-grenoble.fr/index.php?dossier nav=670
Titre Epistémologie de l'informatique
Auteur(s) Dowek, Gilles
Fonction(s) auteur
Notes 51' 16"
Section Analyse
Langue fre
Résumé [[Résumé::Le conférencier donne quelques clés sur la question de savoir en quoi l'informatique est une science et, justement, une science et une technologie? Et d'abord, la philosophie des sciences apporte-t-elle quelque chose à la science? Oui, si l'on prend en considération les questions soulevées par la problématique de la calculabilité. La thèse de Church de 1936, démontrée indépendamment par Turing, selon laquelle le problème de l'arrêt est incalculable, et donc indécidable, définit la notion de fonction calculable, puis démontre qu'une certaine fonction h, qui indique que la machine de Turing termine ou pas, n'est pas calculable. Se pose alors une autre question qui fait de cette thèse une thèse de philosophie des sciences : cette notion formelle de calculabilité est-elle la vraie notion intuitive de calculabilité? Question philosophique que l'on retrouve avec les géométries non euclidiennes. Ces interrogations a posteriori se justifient par la multiplicité de définitions montrées équivalentes, l'absence de contre-exemple (argument empirique), et enfin, pour une meilleure raison, le précédent Ackermann, dans les années 1920, selon lequel la notion de fonctions primitives récursives est tenue pour la bonne notion de fonction calculable jusqu'à la preuve advenue du contraire. La formulation de la thèse de Church sur la réalité du calcul au-delà des apparences a manifestement un relent métaphysique et, par défaut, n'est donc pas une thèse scientifique, mais cette vision de la science est aussi un peu naïve. Historiquement, la philosophie précède la science et l'introduit. La science ne s'intéresse qu'aux questions bien posées, mais la route est longue, avec toute une phase proto-scientifique. On peut donc légitimement penser que les questions de philosophie des sciences impactent les sciences elles-mêmes. En revanche, la classification des sciences fournit une toute autre réponse. A plus d'un siècle et demi d'écart, les quarante sections du CNRS apportent quelques modifications à la classification d'Auguste Comte, en omettant la philosophie positive qui couronnait l'édifice de ce dernier, et en rattachant à la physique les sections de géophysique et d'astrophysique, que Comte insérait, sous les noms de géologie et d'astronomie, entre la chimie et la biologie. Elles distinguent de plus quatre sections de physique appliquée, dont l'informatique. On peut définir une science par l'objet étudié, ou le type de jugements de vérité des propositions, ou encore par la méthode utilisée. Les mathématiques et les sciences de la nature trouvent dans ces critères les formes de leur opposition. Or, l'informatique n'est ni une science de type mathématique ni une science de la nature, à la fois irréductible (aux limites de) aux mathématiques (rapport ontologique), et aux sciences de la nature (rapport méthodologique). Mais ce qui définit le mieux l'informatique, ce sont ses concepts : algorithme, machine, langage et information, découverts par itérations successives. Chacun d'entre eux existe depuis plus ou moins longtemps, de deux siècles pour le machinisme à la nuit des temps pour le langage, mais ce qui fait la spécificité de l'informatique c'est qu'ils marchent ensemble. La pensée informatique elle-même est structurée par ces concepts, voire par le refus de certains d'entre eux, en quelque sorte une automutilation de l'informatique au profit des mathématiques et au détriment de la dimension technique, point de vue soutenu par Djikstra et par certains mathématiciens, dont Jean Dieudonné est représentatif, mais un enseignement réduit à l'algorithmique, amputé des trois autres concepts, serait regrettable. Il y a là un préjugé selon lequel la technique ne fait pas partie de la culture (Platon, Nietzsche, Heidegger...). Dans la technique, on comprend le calcul, rejeté par Saint-Exupéry dans sa caricature du businessman, et l'écriture d'ailleurs issue de la comptabilité, Platon privilégiant la tradition orale des prêtres, rejet qui est aussi celui d'Hannah Arendt. On peut faire remonter les racines de ce préjugé à la trifonctionnalité des cultures [indo-]européennes anciennes chère à Dumézil. Dans ce sens, on peut dire que l'informatique rétablit la technique au centre de la culture.]]
Sélection(s) thématique(s) Cours Généraux d'ISN
Mots-clés normalisés informatique : discipline ; TIC (technologies de l’information et de la communication) ; épistémologie ; théorie de la calculabilité en informatique théorique ; mathématiques : discipline ; algorithmique ; architecture de machine informatique
Proposition autres mots-clés
Type documentaire image en mouvement
Typologie Générale conférence
Date de publication 2011/01/01
Structure du document atomique
Niveau d'agrégation 1.Le plus petit niveau (grain)
Exigences techniques technologie X-TEK
Section Pédagogie
Type pédagogique cours / présentation
Public cible enseignant
Utilisation pédagogique Pour permettre aux enseignants de replacer l'informatique dans le contexte scientifique qui est le sien.
Section Relation
Type de la relation est une partie de
URL de la relation http://specif2011.iut2.upmf-grenoble.fr/index.php?dossier nav=651
Description de la relation Plateforme congrès Specif (Société des Personnels Enseignants et Chercheurs en Informatique de France) 2011.
Section Droits
Droits du document IUT 2-Grenoble
Section processus de validation (workflow)
Intervenants vthierry; DB
Statut du workflow publiée

Signaler cette ressource. Si ce lien de signalement ne fonctionne pas (ouverture intempestive d'un mailer alors que vous utilisez un webmail) c'est qu'il vous manque l'extension idoine dans votre navigateur (par exemple l'extension send-mail pour firefox); c'est une bonne occasion de l'installer.