
PROVING PROGRAMS CORRECT WITH
Nikhil Swamy

Microsoft Research

Joint work with LOTS of people

No shortage of security vulnerabilities in low-level code

And these are just the ones detected by \GS etc.

Fix: Move to higher level languages ...

Higher abstractions

  Improved productivity and fewer bugs

 But, is your program secure? Depends …

 No more buffer overruns … yay!

//upload.wikimedia.org/wikipedia/commons/6/6a/JavaScript-logo.png

CORRECT? SECURE? Your high-speed trading software isn't blowing away billions!

 NASDAQ bugs (Aug 22, 2013), DOW Flash Crash (May 6, 2010), …

 Your SSH/TLS library is heartbleed-free, but is it secure?

 TLS renegotiation  man in the middle; No NSA backdoors?

 Your national health insurance market place does not crash!

OUR GOAL

TO BUILD AND DEPLOY SYSTEMS THAT ARE PROVABLY SECURE, END-TO-END

AN END-TO-END PROGRAM
VERIFICATION AGENDA

1. Precisely state application-specific correctness and security

criteria

2. Use high-level programming language tools to implement

software that can be formally verified to comply with its

specification

3. Generate and deploy low-level code that is also proven to

meet the same specification.

Vampire Simplify CVC4

VeriFast
Why3

Boogie

Spec#

Many research projects on program verification,

for Pascal-like languages

JavaScript: AJAX, Event handlers, jQuery, DOM,…
 Element.addEventListener(ev, function(node){…})
 $('li').each(function(index) { .. })

Delegates, lambdas, LINQ, RX, …

 delegate B Func<A,B>(A arg)
 foreach (var i in L) {…}

Lambdas everywhere!

But, modern languages are not like Pascal!

(pervasively higher-order)

//upload.wikimedia.org/wikipedia/commons/6/6a/JavaScript-logo.png

HIGHER-ORDER VERIFIERS ~
INTERACTIVE PROOF ASSISTANTS

Agda NuPRL …

Very expressive logics! :-)

Impoverished programming languages

 Pure total functions only :-(

Coq

An ML-like language

designed for program verification

Enter F* … http://research.microsoft.com/fstar

Currently: Bhargavan, Delignat-Lavaud, Fournet, Hritcu, Keller, Rastogi, Strub, Swamy

Previously: Borgstrom, Chugh, Dagand, Fredrikson, Guha, Yang, Jeannin, Schlesinger, Weinberger

Since around 2008, many people have worked on it:

http://research.microsoft.com/fstar

val f: x:int -> y:int{y > x}

let f x = x + 1

val sort: f:(a -> a -> Tot bool){total_order a f}

 -> l:list a

 -> Tot (m:list a{sorted m /\ forall x. mem x m = mem x l})

let rec sort f = function

 | [] -> []

 | hd::tl -> let hi, lo = partition (f hd) tl in sort lo@(hd::sort hi)

val counter: unit -> ST (x:int{x >= 0})

let counter =

 let c = ref 0 in

 fun () -> c := !c + 1; !c

Term syntax is core-ML,

resembling F#/Caml-light

Types allows expressing precise,

functional-correctness properties

Program with state and other effects

Z3 F*

Brief history of an evolving line of languages …

Pre-history:

Sage,

Cayenne,

DML,

ATS, …

Fable F7 Fine FX F5 … F* v0.6 … monadic F* … relational F* …. F* version 1.0

2007 2008 2010 2012 2013 2014 2015

An outline of the remainder of this talk:

A quick introduction to refinement types, by example

A brief mention of some our past work

F* version 1.0: An outline of the concepts you will learn over the next 2 days

WEB-BROWSER SECURITY
(IEEE S&P (OAKLAND) 2011)

1. 1/3rd of Firefox users run

extensions (~34 million users)

2. Popular Chrome extensions

have thousands of users

mailto:joe@cs.brown.edu

https://mail.google.com/mail/?view=cm&tf=1&to=joe@cs.

brown.edu&cc=&su=&body=&fs=1

Change links to evil.com?

Google

Dictionary

Service

evil.com

ACCESS CONTROL IN CHROME

"permissions": [

 "tabs",

 "http://www.twitter.com/*",

 "http://api.bit.ly/",

]

2. Extension runs on

these URLs

1. Sensitive APIs

POLICY ANALYSIS
ACCESSIBLE URLS

Access to

all data on

all websites

1,137 extensions policies

Access to

all data on

one website

2—86 websites

POLICY ANALYSIS
ACCESS TO HISTORY

Full

History

Access

1,137 extension policies

"permissions": [

 "http://???"

]

"permissions": [

 "http://*/*"

]

desired, least-privilege security policy is inexpressible

"permissions": [

 "http://???"

]

"permissions": [

 "http://*/*"

]

Rewrite mailto: links on all sites

Sends selected word to Google from any website

Developers
• Write extension policy along with their code

• Use tools to ensure extension conforms to policy

20

Extension source
Fine-grained

extension policy

F* verifier

& compiler App store and users
• Uses tools to ensure extension conforms to policy

• Host and install approved extensions

EXAMPLE:

ONLY READ TEXT IN <HEAD>

type elt

assume val getInnerText :
 e:elt { canRead e }
 -> string

assume val tagName :
 e:elt
 -> string

let canRead e =
 tagName e = "head" || hasAttribute e "public" || …

21

S
e
cu

re
 D

O
M

 A
P
I

P
o
li
cy

let safeRead e =
 if canRead e = "head"
 then getInnerText e
 else "not allowed"

C
o
d

e

Native DOM elements, abstract to

F*, API implemented by browser

A refinement type:
Only those elts e for which canRead e = true

ONLY READ TEXT IN <HEAD>, OR NODES TAGGED "PUBLIC"

UNTRUSTED CLIENT CODE:

VERIFIED BY F* TO MAKE SURE THAT DOM API FUNCTIONS

ARE NEVER ACCESSED EXCEPT AS ALLOWED BY THE POLICY

F* checks pre- and post-conditions statically.

No need for manual code audit; only policy review

Some more examples of refinement types:

val factorial: x:int{x >= 0} -> y:int{y >= 1}

val append: l1:list 'a -> l2:list 'a -> l3:list 'a {length l3 = length l1 + length l2}

val mac: k:key -> t:text{key_property k t} -> tag
val verify: k:key -> t:text -> m:tag -> b:bool{ b ==> key_property k t}

…

23

Extension Name Access control using refinement types

Gmail checker Rewrites “mailto:” links to open Gmail

compose page

Dictionary lookup Queries online dictionary with selection;

displays definition in a popup

PrintNewYorker Rewrites internal links to go directly to

print view

Bookmarking Sends selection to delicious.com

Google Reader client Sends RSS feed links to Google Reader

Facebook miner Sends friends’ Web addresses to

delicious.com

JavaScript toolbox Edits selected text

Password manager Stores and retrieves passwords on each

page

Magnify under mouse Modifies the CSS on the page

Short URL expander Sends URLs to longurlplease.com

Typography Modifies <input> elements

24

Extension source
Fine-grained

extension policy

F* verifier

& compiler

Write and verify F* code

Compile it to JavaScript and deploy in browser

But, how do you know that the code

running in the browser behaves

exactly like the verified source code?

So, we used F*'s type system to prove that a compiler

from F* to JavaScript is fully abstract (popl '13)

• The compiler precisely captures all source properties,

even when a compiled F* program is composed with

arbitrary JavaScript

Refinement types, when combined with other F* features,

can be used to prove highly non-trivial properties

25

Refinement types, when combined with other F* features,

can be used to prove highly non-trivial properties

• Security of an implementation of the TLS 1.2 standard (Cedric and Antoine, tomorrow)

• Self-certification: Proving the correctness of the F* type-checker itself using F*, and

bootstrapping it in Coq (brief mention tomorrow)

• Proving the safety of an embedded, security-oriented sublanguage of TypeScript, a

JavaScript dialect

• Probablistic relational Hoare logic, i.e., a logic similar to EasyCrypt's, encoded in F*'s type

checker and used to prove several small crypto constructions

• …

F* v1.0: Refinements and beyond

• A new version, based on a fresh code base

• Consolidating, then significantly improving, many of our prior efforts

• Written entirely in F* itself, bootstraps to multiple platforms

• Caml done, almost. F# and JavaScript on the way!

• Why a new version?

• Partly motivated by wanting to build a new, high-efficiency, certified

implementation of TLS

F* v1.0: Refinements and beyond

But, it's still under heavy development:

Completing and polishing the implementation:

• Code generations to multiple backends

• Error reporting

• Test, test, test! Then test some more.

And with more research:

• Formal certification of the implementation

• Formally certified proofs from an SMT solver

F* v1.0: Refinements and beyond

A sampling of new features that you will see in the next couple of days …

F* v1.0: Refinements and beyond

A logic including total, recursively defined higher-order functions

let max i j = if i > j then i else j

val max : int -> int -> Tot int

Here's what F* infers for the type of max:

A total function from two integers to an integer

Tot: this is an effect label, meaning

that max is a total function.

assert (map (fun x -> x + 1) [0;1;2] = [1;2;3])

Allows you to rely on computation to state and prove specifications

F* v1.0: Refinements and beyond

Extrinsic and intrinsic proofs

let reverse l = match l with
 | [] -> []
 | hd::tl -> reverse tl @[hd]

val reverse: l:list 'a -> Tot (m:list 'a{length m = length l})

val reverse_involutive: l:list 'a -> Lemma (reverse (reverse l) = l)

An intrinsic refinement of the ML type of reverse

An "after the fact" (aka extrinsic) proof about reverse

F* v1.0: Refinements and beyond

Semantic proofs of program termination

val ackermann: m:int{m>=0} -> n:int{n>=0} -> Tot (a:int{a>=0})
let ackermann m n =
 if m=0 then n+1
 else if n=0 then ackermann (m – 1) 1
 else ackermann (m – 1) (ackermann m (n – 1))

let counter () =
 let c = ST.alloc 0 in
 fun () -> c := c + 1; !c

val counter: unit -> ST (unit -> ST int)

A function that may read or write the heap, or diverge, when

called, returning a stateful function itself

F* v1.0: Refinements and beyond

Other effects

Plus, a customizable lattice of user-defined effects

ST: this is an effect label, meaning

that counter may have state effects or

diverge

let swap x y = let tmp = x in x := !y; y := tmp

val swap: x:ref 'a
 -> y:ref 'a
 –> ST unit
 (requires (fun h -> contains h x && contains h y))
 (ensures (fun hold _ hnew ->
 hnew=(hold[x] <- hold[y])[y] <- hold[x]))
 (modifies {x,y})

F* v1.0: Refinements and beyond

Type inference with indexed effects /

verification condition generation

Plan for today

• Tutorial 1: F* basics.

• Simple stateless access control

• Functions on integers and basic refinement types and lemmas

• Functions on lists and lemmas

• Tutorial 2: More F* basics

• Proving termination

• A full example: A verified implementation of quicksort

Plan for tomorrow

• Lecture 1: Advanced F*, higher-kinds, state, and other effects

• Stateful access control

• Hiding local state

• Lecture 2: Attacks on TLS and a verified implementation in F7

• Tutorial 1: Type-based cryptography in F*

• Tutorial 2: Programming language metatheory in F*

• Syntactic type soundness for the simply typed lambda calculus

