Nikhil Swamy

PROVING PROGRAMS CORRECT WITH *| il

Joint work with LOTS of people

7t

Microsoft Visual C++ Runtime Library

Buffer overrun detected!
Program: C:\WINDOWS \system32'\cubbox.exe
A buffer overrun has been detected which has now be terminatad

Internal state. The program cannot safely contl
now be terminated.

===

Microsoft Visual C++ Runtime Library

Buffer overrun detected!
Program: C:\WINDOWS\explorer.exe

Q

1 N 7 e

Microsoft Visual C++ Runtime Library E

6 Buffer overrun detected!

Program: ...s\McAfee\Common Frameworki{FrameworkService, exe

Q Buffer overnun ceticted!

d A buffer overmun has been deb

Microsoft Visual C++ Runtime Library

. Buffer overrun detected!

A buffer overrun has been detected which has corrupted the program’s
internal state. The program cannot safely continue execution and must

Microsoft Visual C++ Runtime Library

Fnsi Program: .. am Files\Microsoftaiians

Program: ...am Flles\Microsoft Office\OFFICE1 1\WINWORD.EXE

A buffer overnun has been detected which has cormupted the program's
Internal state. The program cannot safiely continue exeaution and must

now be terminated.

Micrasoft Visual C++ Runtime Library

Microsoft Yisual C++ Runtime Library

Program: ...ckard\TouchSmart\Media\Kernel\ CLML\CLMLSvc.exe

Buffer overrun detected!

has been detected which has corrupted the program's o
The pregram cannot safely continue execution and must Program: D:\LODS\aced. exe
sted.

A huffer overrun has been detected which has corrupted the program’s
S(' program cannok safely continue execution and must
i }

Buffer overrun detected! — -
) T

Program: ...am Files\Audible \Brn\AudbleDovnioadHelper. exe

0% A buffer overrun has been datected which has corrupted the program's

internal state. The program cannot safely continue execution and must
now be termnated.

time Error!

gram: C:\Pr

Buffer overrun detected!
Program: C:\Program Files\QuickTime\QuickTimePlayer.exe
A buffer overrun has been detected which has corrupted the program's

internal state. The program cannot safely continue execution and must
now be terminated.

R6025
- pure virtual

The instruction at 0:10148673 referenced memary at 000000000, The
memory could not be written,

Chick on OK to terminate the program

Fix: Move to higher level languages ...

ERLANG

Higher abstractions
=» Improved productivity and fewer bugs

//upload.wikimedia.org/wikipedia/commons/6/6a/JavaScript-logo.png

c O R R E CT? S E c U R E? Your high-speed trading software isn't blowing away billions!

NASDAQ bugs (Aug 22, 2013), DOW Flash Crash (May 6, 2010), ...

Your SSH/TLS library is heartbleed-free, but is it secure?
TLS renegotiation =» man in the middle; No NSA backdoors?

Your national health insurance market place does not crash!

OUR GOAL

T0 BUILD AND DEPLOY SYSTEMS THAT ARE PROVABLY SECURE, END-TQ-END

AN END-TO-END PROGRAM
VERIFICATION AGENDA

1. Precisely state application-specific correctness and security
criteria

2. Use high-level programming language tools to implement
software that can be formally verified to comply with its
specification

3. Generate and deploy low-level code that is also proven to
meet the same specification.

Many research projects on program verification,
for Pascal-like languages

Software Analyzers spec#

\V V
{Chalice
cC
Boogie VeriFast
* Why3 *?

25 EHED Vampire Simplify CVC4

But, modern languages are not like Pascal!
(pervasively higher-order)

»=0N

OO Visual F#
(& Camll Lambdas everywhere!

Delegates, lambdas, LINQ), RX, ...

delegate B Func<A,B>(A arg)
foreach (var 1 in L) {..}

JavaScript: AJAX, Event handlers, jQuery, DOM,...

Element.addEventListener(ev, function(node){..})
JS $('1i').each(function(index) { .. })

//upload.wikimedia.org/wikipedia/commons/6/6a/JavaScript-logo.png

HIGHER-ORDER VERIFIERS ~
INTERACTIVE PROOF ASSISTANTS

NuPRL ...

Very expressive logics! :-)

Impoverished programming languages
Pure total functions only :-(

Enter F* — http://research.microsoft.com/fstar

An ML-like language
designed for program verification

Since around 2008, many people have worked on it:

Currently: Bhargavan, Delignat-Lavaud, Fournet, Hritcu, Keller, Rastogi, Strub, Swamy
Previously: Borgstrom, Chugh, Dagand, Fredrikson, Guha, Yang, Jeannin, Schlesinger, Weinberger

http://research.microsoft.com/fstar

val
let

val

let

val
let

Program with state and other effects

f: x:int -> y:int{y > x} Term syntax is core-ML,

Fx = x + 1 resembling F#/Caml-light

sort: f:(a -> a -> Tot bool){total order a f}
-> 1:1ist a
-> Tot (m:1list a{sorted m /\ forall x. mem x m = mem x 1})
rec sort f = function i]
Types allows expressing precise,
[1 -> [] functional-correctness properties

hd::tl -> let hi, lo = partition (f hd) tl in sort lo@(hd::sort hi)

counter: unit -> ST (x:int{x >= 0})
counter =
F

let ¢ = ref 0 in

fun () -> c :=lc +1; lc

Brief history of an evolving line of languages ...

Pre-history: D

Sage,
Cayenne, Fable F7 Fine FXF5 ... F¥v0.6 ... monadic F* ... relational F* . {/F* version 1.0 *

DML,

ATS, ...
2007 2008 2010 2012 2013 20] 4 2015

An outline of the remainder of this talk:

A quick introduction to refinement types, by example

A brief mention of some our past work

F* version 1.0: An outline of the concepts you will learn over the next 2 days

WEB-BROWSER SECURITY

(IEEE S&P (OAKLAND) 2011)

6 i cxb s @ Add-ons for

Extensions :: Add-ons for Firefox b

() >]

able 1o download from. We have |
that you can play your files immediately.

ﬁ AniWeather
by AniWeather

+ | Add to Firefox

Y T T

108,888 weekly downloads

AniWeather = Animated Weather + Any Weather. 44 368 reviews

When it rains, it really does!

(| Stylish + | Add o Firefox
=1 by Jason Barnabe

Restyle the web with Stylish, a user styles manager. Stylish lets you
easily install themes and skins for Google, Facebook, YouTube, Orkuf
and many, many other sites. You can even customize Firefox and
other programs themselves.

Support this add-on: Contribute $5.00

1. 1/3 of Firefox users run

D Web of Trust - Safe Browsing Tool
by WOT Services

extensions (~34 million users)

Would you like to know which websites you can trust? The Web of
Trust (WOT) add-on is a safe surfing tool for your browser. Traffic-lighi
rating symbols show which websites you can trust when you search,
shop and surf on the Web.

2. Popular Chrome extensions
have thousands of users

Support this add-on: Contribute $10.00

. FoxTab + | Add to Firefox
by The FoxTab Team

30 in your browser! FoxTab brings innovative 3D functionality to your
Firefox.

W A L

103,510 weekly downloads

800/ il joe Politz x s

A

€ 2 C O www.cs.brown.edu/~joe/

. o —1 800 Compose Mail - arjun.guha@gmail.com - Cmail
mqlltozloe U Cs'brown’edu Iﬂ httpﬁ:j,ﬂ'mail.google.mm,u"mailf'?view=cm&tf=1&to=joe@c5.bmwn.edu&....

-~

Send Save Now Discard

me;[Arjun Guha <arjun.guha@gmail.com:> } :i

To: joe@cs.brown.edu

Add Cc | Add Bee
Also include: Shriram Krishnamurthi Jonathan Sailor Cormac

to evil.c

https:/ /mail.google.com /mail /2view =cm&tf=1&to=joe @cs.
brown.edu&cc=&su=&body=~&fs=1

4 | F

B

A

evil.com

a0 n; [*]CGmail - communication

Itexas.edu>

nave been awaiting replies from me --
es for my prolonged silence.

ence was supposed to have connectivity. It never

d, other than one brief period when one of the local chairs
antop as a router, but | was too far away in the enormous
\S\ o receive a signal on my mobile phone.

@/) oposed to have connectivity; but various Web si
: ad while it could do some things like Gg o%
viaps, unison, /)) yer, ever could send a messag X0 O
(and | could only *ré& ,l/ L HTML mode). | trieg d
using ssh to CS, but aulted. | tgg lo)!

the gods and gave up. /)) \66 N
) »C
/ ’ inectivity at two

| might point out that in additiog
sites, Matthias/Matthew/B (@) ivity at their apartment
too. In addition, whi 56 al the ment | stayed

in also routinely prinections, wh // ion from my

chaise: A horse-drawil carriage for one
or two people, typically one with an open \and is a “ "
top and two wheels know. Edinb

Mere » njon, during the
me Scowsn £ Jnenment, ne city was suddenly able to susts
daily post-chaise to London. | am beginning to suspect that that
service still runs, and the city's I[P packets are carried on it, to be
pumped into the electronic network when they arrive in London. This
might explain why Edinburgh has so many theoreticians and so few
asvetarms nannle: aut of oure necessitvy rathar like the Riuzssians all

o

P ‘IIII\..L
& https://mail.google.com/mail [7ui=2&ik=c226f2512b&vie... |_| 1}/)—\
1011
hnamurthi <sk@cs.brown.edu> Thu, Sep 3, 2DD9
tore@cs.brown.edu, cs018tas@ecs.brown.edu, William Cook

Google
Dictionary
Service

Al g

ACCESS CONTROL IN CHROME

"permissions": [
"tabs'",
"http://www.twitter.com/*",

1. Sensitive APlIs

Confirm Installation

Install Twitter Extender?

This extension can access: .
xtension runs on

Your data on api.bit.ly and twitter.com ’rhese URLS

Your browsing history

POLICY ANALYSIS

ACCESSIBLE URLS

Access to
all data on
all websites

Access to
all data on
one website

1,137 extensions policies

POLICY ANALYSIS

ACCESS TO HISTORY

1,137 extension policies

(L)) o ﬁjoe Politz

€ 2 C © www.cs.brown.edu/~joe/

800 Compose Mail - arjun.guha@gmail.com - Gmail
B https://mail.google.com/mail /view=cm&tf=1&to=joe@cs.brown.edu&...

Joe Politz

— permissions" :
I'ma second vear PhD student in comd — T e - "http : //*/* LAl

&P Attach afile Insert: |nvitation

the gods and gave up.

desired, least-privilege security policy is inexpressible

Wi, I auddiudwnn,, wWine Wil cauudlll-al UIcls, uic apal
in also routinely had poor connections, while the cc
her.

chaise: A horse-drawn carriage for one
or two people, typically one with an open \and is a
top and two wheels know, Ec

Sends selec’red word to Google from any website

service stlll runs, and the n::ltyfr s IF' packets are carrie " ",
pumped into the electronic network when they arriv perm1881ons *
might explain why Edinburgh has so many theoretit " . d /H%M
systems people: out of pure necessity, rather like th http * / / /

did theory back in the days when they couldn't affor

Anyway, | am back in the land of the free connectiol
brave IP packets, so all should be well henceforth.

rrmmls me | amdekb im o mam A Frnar biimdesd] s L

Fine-grained :
. . Extension source
extension policy
Developers

* Write extension policy along with their code
* Use tools to ensure extension conforms to policy

F* verifier
App store and users & compiler
* Uses tools to ensure extension conforms to policy

* Host and install approved extensions

EXAMPLE:
ONLY READ TEXT IN <HEAD>

Secure DOM API

Policy

Code

type elt Native DOM elements, abstract to

F*, APl implemented by browser

assume val getInnerText
e:elt { canRead e }
-> string

assume val tagName
e:elt

Only those elts e for which canRead e = true

-> string

F* checks pre- and post-conditions statically.

No need for manual code audit; only policy review
me neac NaSALLrilDULE e pun

let safeRead e =
if canRead e = "head"
then getInnerText e
else "not allowed"

Some more examples of refinement types:

val factorial: x:int{x >= 0} -> y:int{y >= 1}

val append: 11:1ist 'a -> 12:1list 'a -> 13:1ist 'a {length 13 = length 11 + length 12}

val mac: k:key -> t:text{key property k t} -> tag
val verify: k:key -> t:text -> m:tag -> b:bool{ b ==> key property k t}

Gmail checker

Dictionary lookup

PrintNew Yorker

Bookmarking
Google Reader client

Facebook miner

JavaScript toolbox

Password manager

Magnify under mouse

Short URL expander
Typography

Rewrites “mailto:” links to open Gmail
compose page

Queries online dictionary with selection;
displays definition in a popup

Rewrites internal links to go directly to
print view

Sends selection to delicious.com
Sends RSS feed links to Google Reader

Sends friends’ Web addresses to
delicious.com

Edits selected text

Stores and retrieves passwords on each
page
Modifies the CSS on the page

Sends URLs to longurlplease.com

Modifies <input> elements

23

Fine-grained :
. . Extension source
extension policy

Write and verify F* code
Compile it to JavaScript and deploy in browser

But, how do you know that the code
running in the browser behaves

exactly like the verified source code? F* verifier
& compiler

So, we used F*'s type system to prove that a compiler
from F* to JavaScript is fully abstract (popl '13)

* The compiler precisely captures all source properties,
even when a compiled F* program is composed with
arbitrary JavaScript

Refinement types, when combined with other F* features,
can be used to prove highly non-trivial properties

Refinement types, when combined with other F* features,
can be used to prove highly non-trivial properties

* Security of an implementation of the TLS 1.2 standard (Cedric and Antoine, tomorrow)

* Self-certification: Proving the correctness of the F* type-checker itself using F*, and
bootstrapping it in Coq (brief mention tomorrow)

* Proving the safety of an embedded, security-oriented sublanguage of TypeScript, a
JavaScript dialect

* Probablistic relational Hoare logic, i.e., a logic similar to EasyCrypt's, encoded in F*'s type
checker and used to prove several small crypto constructions

F* v1.0: Refinements and beyond

A new version, based on a fresh code base
Consolidating, then significantly improving, many of our prior efforts

Written entirely in F* itself, bootstraps to multiple platforms
* Caml done, almost. F# and JavaScript on the way!

Why a new version?
* Partly motivated by wanting to build a new, high-efficiency, certified
implementation of TLS

F* v1.0: Refinements and beyond

But, it's still under heavy development:

Completing and polishing the implementation:
* Code generations to multiple backends
* Error reporting
* Test, test, testl Then test some more.

And with more research:
* Formal certification of the implementation
* Formally certified proofs from an SMT solver

F* v1.0: Refinements and beyond

A sampling of new features that you will see in the next couple of days ...

F* v1.0: Refinements and beyond

A logic including total, recursively defined higher-order functions

Here's what F* infers for the type of max:
A total function from two integers to an integer

val max : int -> int -> Tot int

let max i j = if 1 > j(then 1 else j
Tot: this is an effect label, meaning

that max is a total function.

Allows you to rely on computation to state and prove specifications

assert (map (fun x -> x + 1) [0;1;2] = [1;2;3])

F* v1.0: Refinements and beyond

Extrinsic and intrinsic proofs

An intrinsic refinement of the ML type of reverse
val reverse: 1l:1list 'a -»> Tot[(m:list 'a{length m = length 1})]
let reverse 1 = match 1 with

| [1 -> [1]
| hd::tl -> reverse tl @[hd]

val reverse _involutive: l:list 'a -> Lemma (reverse (reverse 1) = 1)

An "after the fact" (aka extrinsic) proof about reverse

F* v1.0: Refinements and beyond

Semantic proofs of program termination

val ackermann: m:int{m>=0} -> n:int{n>=0} -> Tot (a:int{a>=0})
let ackermann m n =

if m=0 then n+l

else if n=0 then ackermann (m - 1) 1

else ackermann (m - 1) (ackermann m (n - 1))

F* v1.0: Refinements and beyond

Other effects

A function that may read or write the heap, or diverge, when
called, returning a stateful function itself

val counter: unit -> ST (unit -> ST int)
let counter () =

let ¢ = ST.alloc 9 in ST: this is an effect label, meaning
fun () -> c :=c + 1; lc that counter may have state effects or
. T diverge

Plus, a customizable lattice of user-defined effects

F* v1.0: Refinements and beyond

Type inference with indexed effects /
verification condition generation

val swap: x:ref 'a
-> y:ref 'a
-> ST unit
(requires (fun h -> contains h x && contains h y))
(ensures (fun hold _ hnew ->
hnew=(hold[x] <- hold[y])[y] <- hold[x]))
(modifies {x,y})

let swap x y = let tmp = x in x := ly; y = tmp

Plan for today

e Tutorial 1: F* basics.
* Simple stateless access control
* Functions on integers and basic refinement types and lemmas
* Functions on lists and lemmas

* Tutorial 2: More F* basics
* Proving termination
* A full example: A verified implementation of quicksort

Plan for tomorrow

* Lecture 1: Advanced F*, higher-kinds, state, and other effects
* Stateful access control
* Hiding local state

* Lecture 2: Attacks on TLS and a verified implementation in F/
* Tutorial 1: Type-based cryptography in F*

e Tutorial 2: Programming language metatheory in F*
* Syntactic type soundness for the simply typed lambda calculus

