
Verifying communications protocols: from Needham–Schroeder to TLS

Specifications, models, and implementations

Security, refinements, and type safety

1. Sample security programming: access control

2. Sample protocol: authenticated RPC

3. Computational safety
for authentication primitives: MACs, signatures

4. Computational secrecy
for various encryptions: CPA, CCA2, EtM, Hybrid

5. Application:
authenticated encryption for the TLS transport layer

Modular Cryptographic
Verification by Typing in F*

Review:

Type-Based
Verification in F*

Event-Based Specifications: Assume and Assert

• Suppose there is a global set of events, the log

• To evaluate assume C, add C to the log, and return ().

• To evaluate assert C, return ().
– If C logically follows from the logged formulas,

we say the assertion succeeds; otherwise, the assertion fails.

– The log is only for specification purposes; it does not affect execution

– Refinement types carry logical properties,
from assumptions to assertions

– Type safety guarantees that all assertions will succeed.

Programming example: access control for files

• Trusted code expresses security policy with assumes and asserts
(privileged operations)

• Untrusted but well-typed code may call trusted libraries

• Typechecking ensures static compliance with the policy

Method:

Type-Based
Cryptographic Verification

Modular Type-Based Cryptographic Verification

symmetric
encryption
(AES-CBC)

cryptographic
algorithms

symmetric
encryption

(RC4)

Secure RPC

another
attack

TLS 1.2

active
adversaries

security
protocols

cryptographic
constructions

encrypt
then-MAC

fragment-MAC-
encode-then-encrypt

typed interfaces:
cryptographic assumptions

typed interfaces:
attacker models

some
attack

some
attack

some
attack

MAC
(SHA1)

typed interfaces:
security guarantees

INT-CMA IND-CPA

authenticated encryption

secure channel

Cryptographic primitives are partially specified

• Symbolic models reason about fully-specified crypto primitives
– Same rewrite rules apply for the attacker as for the protocol

– Each crypto primitive yields distinct symbolic terms

• Computational models reason about partially-specified primitives
(the less specific, the better)
– Positive assumptions: what the protocol needs to run as intended

e.g. successful decryption when using matching keys

– Negative assumptions: what the adversary cannot do
e.g. cannot distinguish between encryptions of two different plaintexts

• Security proofs apply parametrically,
for any concrete primitives that meet these assumptions

• Typed interfaces naturally capture partial specifications

Probabilistic F* ?

• We equip F* with a probabilistic
semantics (Markov chains)

– We add a new “fair coin-tossing” primitive

– The rest of the semantics is unchanged
(reductions, structural rules, type safety)

Sample Communications Protocol in F*

Authenticated RPC

Client
Service

request MAC

response MAC

Network adversary

Authenticated RPC

Client
Service

request MAC

response MAC

Network adversary

Informal description

Is this protocol secure?

Modular verification
for a sample protocol

cryptographic
primitives Formatting

format.fst

active
adversaries

security
protocols

typed interfaces
(security assumptions)

plain typed interfaces
(attacker model)

HMAC
mac.fst

INT-CMA

any typed
F* program

Authenticated RPC
rpc.fst

Bytes, Network
lib.fst

typed interfaces
(modular design)

system
libraries

adv.fst

application code

any typed
F* program

Connecting to localhost:8080
Sending {BgAyICsgMj9mhJa7iDAcW3Rrk...} (28 bytes)
Listening at ::1:8080
Received Request 2 + 2?
Sending {AQA0NccjcuL/WOaYS0GGtOtPm...} (23 bytes)
Received Response 4

Test

Sample Typed Interface for Cryptography

MAC : integrity

Sample functionality:

Message Authentication Codes

module MAC

type text = bytes val macsize
type key = bytes
type mac = bytes

val GEN : unit -> key
val MAC : key -> text -> mac
val VERIFY: key -> text -> mac -> bool

basic ML
interface

This interface says nothing
on the security of MACs.

module MAC

type text = bytes val macsize
type key
type mac = bytes

val GEN : unit -> key
val MAC : key -> text -> mac
val VERIFY: key -> text -> mac -> bool

MAC keys are abstract

Sample functionality:

Message Authentication Codes

module MAC

type text = bytes val macsize
type key
type mac = b:bytes{Length(b)=macsize}

val GEN : unit -> key
val MAC : key -> text -> mac
val VERIFY: key -> text -> mac -> bool

MACs are
fixed sized

MAC keys are abstract

Sample functionality:

Message Authentication Codes

module MAC

type text = bytes val macsize
type key
type mac = b:bytes{Length(b)=macsize}

logic type Msg: key -> text -> Type

val GEN : unit -> key
val MAC : k:key -> t:text{Msg k t} -> mac
val VERIFY: k:key -> t:text -> mac

-> b:bool{ b=true) Msg k t }

ideal F7
interface

“All verified messages
have been MACed”

MAC keys are abstract

MACs are
fixed sized

Msg is specified by
protocols using MACs

Sample functionality:

Message Authentication Codes

module MAC

type text = bytes val macsize
type key
type mac = b:bytes{Length(b)=macsize}

logic type Msg: key -> text -> Type

val GEN : unit -> key
val MAC : k:key -> t:text{Msg k t} -> mac
val VERIFY: k:key -> t:text -> mac

-> b:bool{ b=true) Msg k t }

ideal F7
interface

“All verified messages
have been MACed”

MAC keys are abstract

MACs are
fixed sized

Msg is specified by
protocols using MACs

module RPC

assume 8 k,q. Msg(k,Utf8(q)) <=> Request(q)

let client q = let server q =
// precondition: … if VERIFY k (utf8 q) m
// Request(q) then // we have Request(q)
… send MAC k (utf8 q) process q

sample
protocol

using
MACs

Sample functionality:

Message Authentication Codes

module MAC
open System.Security.Cryptography

let macsize = 20
let GEN() = randomBytes 16
let MAC k t = (new HASHMACSHA1(k)).ComputeHash t
let VERIFY k t m = (MAC k t = m)

module MAC

type text = bytes val macsize
type key
type mac = b:bytes{Length(b)=macsize}

logic type Msg: key -> text -> Type

val GEN : unit -> key
val MAC : k:key -> t:text{Msg k t} -> mac
val VERIFY: k:key -> t:text -> mac

-> b:bool{ b=true) Msg k t }

ideal F7
interface

MAC keys are abstract

MACs are
fixed sized

Msg is specified by
protocols using MACs

concrete F#
implementation

(using .NET)

“All verified messages
have been MACed”

This can’t be true!
(collisions)

Sample functionality:

Message Authentication Codes

Sample computational assumption:

Resistance to Chosen-Message
Existential Forgery Attacks (INT-CMA)

let k = MAC.keygen()
let log = ST.alloc []

let mac t =
log := t::!log
MAC.mac k t

let forgery t m =
MAC.verify k t m
&& not (List.mem t !log)

CMA game [Goldwasser et al. 1988]
programmed in ML

Computational Safety
a probabilistic polytime program
calling mac returns (t,m)
such that forgery t m only
with negligible probability ²

protocol adversary
typed against
RPC interface

Computational Safety for MACs

concrete system

RPC
protocol

Mac

sample protocol
typed against
ideal MAC interface

Ideal
filter

error correction
making VERIFY returns
false on forgeries

Ideal MAC

Mac

Any p.p.t.
adversary

RPC
protocol

Any p.p.t.
adversary

ML interfaceML interface

ideal system

secure RPC

concrete algorithm
assumed INT-CMA
computationally

safe too,
with probability ¸ 1 - ²

perfectly safe
by typing

¼²

IN
T-

C
M

A

ad
ve

rs
ar

y

Ideal MAC library in F*

• Libraries are multi-instance,
as opposed to the basic functionality

• Libraries must support key compromise
for some of their instances

Sample Typed Interface for Cryptography

encryption : secrecy

Perfect Secrecy by Typing

• Secrecy is expressed using observational equivalences
between systems that differ on their secrets

• We prove (probabilistic, information theoretic)
secrecy by typing, relying on type abstraction

Abstract Plaintexts

• Encryption is parameterized by a module
that abstractly define plaintexts, with interface

module Plaintext

val size: int
assume type plain
type repr = b:bytes{length b = size}

val coerce : repr -> plain // turning bytes into secrets
val leak : plain -> repr // breaking secrecy!

val respond: plain -> plain // sample protocol code

If we remove the leak function,
we get secrecy by typing

The size of plaintext is fixed
(as we cannot hide it)

Plain may also implement any
protocol functions that operates on secrets

If we remove the coerce function,
we get integrity by typing

Ideal Interface for Authenticated Encryption

• Relying on basic cryptographic assumptions (IND-CPA, INT-CTXT)
its ideal implementation never accesses plaintexts!
Formally, ideal AE is typed using an abstract plain type
encrypt k p encrypts instead zeros to c & and logs (k,c,p)
decrypt k c returns Some(p) when (k,c,p) is in the log,

or None otherwise

module AE
open Plaintext

type key
type cipher = b:bytes{length b = size + 16}

val keygen: unit-> key
val encrypt: key -> plain -> cipher
val decrypt: key -> cipher -> option plain

An Ideal Interface for CCA2-Secure Encryption

• Its ideal implementation encrypts zeros instead of plaintexts
so it never accesses plaintext representations,
and can be typed parametrically

module PKE
open Plain

val pksize: int
type skey
type pkey

val ciphersize: int
type cipher = b:bytes{Length b=ciphersize}

val keygen: unit -> pkey * skey
val encrypt: pkey -> plain -> cipher
val decrypt: skey -> cipher -> plain

Sample computational assumption:

Indistinguishability against
Chosen Plaintexts & Ciphertexts Attacks

module CCA2
open RSA_OAEP

let pk,sk = keygen()
let log = ref []
let b = sample bool
let encryptOracle p0 p1 =
let p = if b then p0 else p1
let e = encrypt pk p
log := e::!log
e

let decryptOracle c =
if c in !log
then None
else Some(decrypt sk c)

CCA2 game
(coded in ML)

Asymptotic security
a probabilistic polytime program
calling encrypt and decrypt guesses
which plaintexts are encrypted
only with a negligible advantage

Variants: CPA & Authentication

• With CPA-secure encryption, we have a weaker ideal interface
that demands ciphertext integrity before decryption

• With authenticated encryption, we have a stronger ideal interface
that ensure plaintext integrity (much as MACs)

assume type Encrypted of key * cipher

val ENC: k:key -> plain -> c:cipher{Encrypted k c}
val DEC: k:key -> c:cipher{Encrypted k c} -> plain

assume type Msg of key * plain // defined by protocol

val ENC: k:key -> p:plain{Msg k p} -> cipher
val DEC: k:key -> cipher -> p:plain{Msg k p} option

Sample Cryptographic Constructions

• We can program and verify sample crypto constructions
such as hybrid encryption and encrypt-then-MAC

• We prove these constructions secure by typechecking
against interfaces of Plain, SymEnc, and PKEnc

symmetric
encryption

.

public-key
encryption

hybrid
encryption

IND-CPA

IND-CPA

IND-CPA

symmetric
encryption

.

MAC

Encrypt-
then-MAC

IND-CPA

Auth Encrypt

INT-CMA

module HybridEnc
let pksize = PKEnc.pksize + SymEnc.ciphersize
let ciphersize = PKEnc.ciphersize + SymEnc.ciphersize

let keygen() = PKEnc.GEN()

let encrypt pk plain =
let k = SymEnc.keygen ()
append (PKEnc.encrypt pk k) (SymEnc.encrypt k plain)

let decrypt sk cipher =
let c0,c1 = split PKEnc.ciphersize cipher
SymEnc.decrypt (PKEnc.decrypt sk c0) c1

Sample modular verification (crypto)

RPC using Encrypt-then-MAC

cryptographic
schemes

Formatting

active
adversaries

security
protocols

MAC
authentication

any typed
F# program

Secure RPC

Bytes

system
libraries

Adversary Model

application code

any typed
F7 program

cryptographic
constructions

probabilistic
computational
indistinguishability

Encrypt-then-MAC

AES-CBC
encryption

authenticated encryption message format

RPC API

≈ IDEAL

IND-CPA
≈ IDEAL

INT-CMA

Networking

Towards TLS: adding Type Indexes

• Within TLS, we keep track of many keys,
for different algorithms & sessions

• We use finer ideal functionalities
that provide conditional security only for “good” keys
– generated by algorithms assumed computationally strong; and
– for sessions between honest participants

(not those with the adversary)

module AE
open Plain
type key (a:algorithm)(id:sessionID)
(…)
val keygen: a:algorithm -> s:sessionID -> key a s
val leak:
a:algorithm -> s:sessionID {weak a || corrupt s} ->
key a s -> bytes

val coerce:
a:algorithm -> s:sessionID {weak a || corrupt s} ->
bytes -> key a s

The type of the key
generated for this algorithm
used only for this session

Transport Layer Security (Review)

• Interleaving of four protocols
on top of the record layer

Record Layer

Handshake
protocol

Change
ciphersuite

Alert
protocol

App. data
protocol

authenticated encryption with additional data

stateful authenticated encryption

fragment ; compress

dispatch

CS Ka Ke

CS’ Ka’ Ke’

TCP/IP

plain fragments

encrypted fragments

I/O bytestreams

Application

web pages

fresh keys
for each
new epoch

DHGroup

DH

CRE

PRF

RSA

Cert

Sig

SessionDB

StAE

LHAE

Enc

MAC

Record

Dispatch

TCP

Untyped Adversary

Encode

LHAEPlain

StPlain

TLSFragment

Alert
Datastream

Handshake (and CCS)

TLSInfoTLSConstants

Handshake/CCS

TLS
Record

AppData

Base Bytes

Untyped API
Adversary

RPC

RPCPlainApplication

TLS API

Alert
Protocol

AppData
Protocol

Nonce

TLS

CoreCrypto

RSAKey

Auth

AuthPlain

Extensions

1

2

3 4

5

6
7

Range

8

9Error

Modular Architecture for miTLS

DHGroup.html
DH.html
CRE.html
PRF.html
RSA.html
Cert.html
Sig.html
SessionDB.html
StatefulLHAE.html
LHAE.html
Enc.html
MAC.html
Record.html
Dispatch.html
TCP.html
Encode.html
LHAEPlain.html
StatefulPlain.html
TLSFragment.html
Alert.html
DataStream.html
Handshake.html
TLSInfo.html
TLSConstants.html
AppData.html
Bytes.html
UTLS.html
RPC.html
Nonce.html
TLS.html
CoreCrypto.html
RSAKey.html
Game.php/?game=1
Game.php/?game=1
Game.php/?game=3
Game.php/?game=3
Game.php/?game=4
Game.php/?game=4
Game.php/?game=5
Game.php/?game=5
Game.php/?game=6
Game.php/?game=6
Game.php/?game=7
Game.php/?game=7
Extensions.html
Game.php/game=2
Game.php/game=2
Range.html
Game.php/?game=7
Game.php/?game=7
Game.php/?game=7
Game.php/?game=7
Error.html

Verifying the miTLS reference implementation

Transport Layer
(not the handshake)

agile
length-hiding
stateful

Authenticated Encryption
for fragment streams
with additional data

Verifying the miTLS reference implementation

MAC

Fragment; MAC; Encode; then Encrypt

plaintext message sent by the application

fragment to be sent later

fragment

padMACfragment

sent earlier

fragmenting & padding
are under-specified

IV encrypted record .header

sent/received on TCP connection

• TLS decodes the decrypted text before authentication;
potentially leaking secret information (via “padding oracles”)

• Security relies on joint ciphertext integrity (INT-CTXT)
The proof is ad hoc (for CBC) and depends on |MAC| > |Block|
(recent attack & proof by Paterson et al. at ASIACRYPT’11)

content type &
sequence number

content type &
sequence number

Fragment-then-Compress?

• Large messages are sliced
into many fragments

• When encoded, each fragment is
independently compressed

• An eavesdropper can record
the sequence of fragment
ciphertext lengths, and obtain
precise message fingerprints

– leaking much more than
the total message length

max fragment length (16KB)

lengths observed on the network

(16KB)

Fragment-then-Compress?

• Experimental data: downloading songs over HTTPS:

Our approach: disable compression, then

Hide secret lengths within public ranges

• The application chooses its own plaintext range,
e.g. any secret URL of size 0..200 bytes

•
0

• Fragmentation and padding depends
only on the range & ciphersuite,
not on the secret message length & content

Formally, we index our type of plaintext fragments
by their range & sequence number in the stream too.
By typing, we check that

Abstract Plaintext Fragments

• Abstract plaintext fragments are indexed by

– key info including negotiated algorithms and connection info

– range for the (secret) plaintext length

– additional data, encoding e.g. TLS version & fragment number

• Type abstraction yields conditional security
for plaintexts with safe key info

module PlainAEAD
type data (ki:KeyInfo) = b:bytes{…}
type fragment (ki:KeyInfo) (rg:range) (ad:data)

val leak:
ki:KeyInfo{not(Safe ki))} -> rg:range -> ad:data ->
fragment ki rg ad -> b:bytes{length b in rg}

val coerce:
ki:KeyInfo{not(Safe ki)} -> rg:range -> ad:data ->
b:bytes{length b in rg} -> fragment ki rg ad

module PlainAEAD
type data (ki:KeyInfo) = b:bytes{…}
type fragment (ki:KeyInfo) (rg:range) (ad:data)

val leak:
ki:KeyInfo{not(Safe ki))} -> rg:range -> ad:data ->
fragment ki rg ad -> b:bytes{length b in rg}

val coerce:
ki:KeyInfo{not(Safe ki)} -> rg:range -> ad:data ->
b:bytes{length b in rg} -> fragment ki rg ad

Authenticated Encryption in TLS

• encryption & decryption with a safe index
do not access the plaintext bytes (IND-CPA)

• decryption with a safe index
succeeds on correctly-encrypted ciphertexts,
returns an error otherwise (INT-CTXT)

module AEAD

val encrypt:
ki:KeyInfo -> key ki -> ad: data ki ->
rg:range -> p: fragment ki rg ad -> c:cipher ki { CTXT ki ad p c }

val decrypt:
ki:KeyInfo -> key ki-> ad: data ki ->
c: cipher{length c = cipherLength ki} ->
r: option (rg: range * fragment ki rg ad)
{ safe ki => forall p. r = Some p <=> CTXT ki ad p c }

Main TLS API

The TLS API & ideal functionality

• Our API is similar but more informative than mainstream APIs

– We run on the caller’s thread,
letting the application do the scheduling & multiplexing

– We give more control to the application code,
and reflect more information from the underlying TLS state
(lengths, fragmentation, authorization queries)

• More precise security theorems

• More flexibility for experiments & testing

• We can implement safe & simple APIs on top of it

• Sample applications using our API

• Secure RPCs (with one connection per call)

• Password-based client authentication

• Basic HTTPS clients and servers (for interoperability testing)

our main
TLS API
(outline)

type cn // for each local instance of the protocol

// creating new client and server instances

val connect: tcp -> params -> result (c:cn{role c = Client})

val accept: Tcp -> params -> result (c:cn{role c = Server})

// triggering new handshakes, and closing connections

val rehandshake: c:cn{role c = Client} -> result (c:cn …)

val request: c:cn{role c = Server} -> result (c:cn …)

val shutdown: c:cn -> result tcp

// writing data

type ioresult_o (c:cn) (data:msg_o c) =

| WriteComplete of c':cn …

| WritePartial of c':cn * rest:(;c') msg_o

| MustRead of c':cn …

val write: c:cn -> data: msg_o c -> ioresult_o c data

// reading data

type ioresult_i (c:cn) =

| Read of c':cn * data:(;c) msg_i

| CertQuery of c':cn …

| Handshake of c':cn …

| Close of tcp

| Warning of c':cn * a:alertDescription

| Fatal of a:alertDescription

val read : c:cn -> ioresult_i c

Each application provides
its own plaintext module
for data streams:

• Typing ensures
secrecy and authenticity
at safe indexes

Each application creates
and runs session &
connections in parallel

• Parameters select
ciphersuites and
certificates

• Results provide
detailed information
on the protocol state

Main crypto result:
concrete TLS and
ideal TLS are
indistinguishable

Our typed ideal API
for TLS thus yields
application security
by typing

miTLS

implementation

miTLS typed API

Bytes, Network

lib.fs

Cryptographic Provider

cryptographic assumptions

any program

representing

the adversay

application
data stream

miTLS ideal

implementation

miTLS typed API

application

Safe, except for a

negligible probability
Safe by typing

(info-theoretically)

7,000 lines of F#
checked against
3,000 lines of F7
type annotations
+
3,000 lines of EasyCrypt
for the core key exchange

Interoperability & Performance

We account for some side-channels, not for timing

1. verification tools: F7, F*, Z3, EasyCrypt
now: mechanized theory using Coq/SSReflect

next: certified F* tools (POPL’12) and SMT solver

2. cryptographic assumptions
now: concrete reductions using Easycrypt

next: mechanized proofs with relational probabilistic F* (POPL’14)

3. the F# compiler and runtime: Windows and .NET
next: minimal TCB running e.g. on isolated core

4. core cryptographic providers
next: correctness for selected algorithms (elliptic curves)

OLDER SLIDES

An Implementation of TLS with
Verified Cryptographic Security

Our ideal API provides strong, modular, usable,
conditional application security by typing.

We trust

• automated typechecking: F7 and Z3

– Now: mechanized type theory

– Next: certified typechecker (F*, POPL’12) and SMT solver

• cryptographic assumptions, with handwritten proofs

– Next: better concrete reductions, with tighter bounds

– Next: mechanized proofs a la Certicrypt & Easycrypt

• the F# compiler and runtime: Windows and .NET

• core cryptographic providers

– Next: correctness proofs for selected algorithms (elliptic curves)

We account for some side-channels, but not for timing analysis

An Implementation of TLS with
Verified Cryptographic Security

Summary

• We verify protocol implementations by typechecking

• Verification is modular

• We use abstract types and refinements to specify cryptography

• We capture standard (probabilistic polynomial time) assumptions

• We precisely control composition using typed interfaces

• Except for new crypto libraries, proofs are automated & fast

• We are working towards applications certified using Coq

• New: self-certification for the typechecker

• Next: cryptographic transformations behind typed interfaces

• Our approach and libraries are language-independent

• So far we use F# & F7

Summary

• Implementation details cryptographically matter
– We re-discovered classic attacks, found new ones

• We verify protocol implementations by typechecking
– Verification is modular
– We use abstract types and refinements to specify cryptography
– We capture standard (probabilistic polynomial time) assumptions
– We precisely control composition using typed interfaces
– Except for new crypto, proofs are automated & fast

• Not yet another work on (simplified) TLS verification
– A full-fledged, interoperable implementation,

verified down to concrete wire formats
– Reduced to common computational cryptographic assumptions
– Reasonable performance (but could be faster)

reuse of buffer space needs finer verification tools

• Our approach and libraries are language-independent
– So far we use F# & F7

• Yet not the final word on TLS
– Handshake; formal certification
– RFCs and practice still evolving

Internal
interface
for
LH-AEAD

• Ranges are
public, lengths
are secret

• Conditional
security
guarantees

• Constraints on
inputs and
outputs
(excluding
runtime error)

• IND CPA &
INT-CTXT

predicate CTXT of KeyInfo * data * plain * cipher
type (;ki:KeyInfo) key // possibly stateful
type (;ki:KeyInfo) keyrepr = b:bytes{Length(b)=…}

val GEN: ki:KeyInfo -> (;ki)key
val COERCE:
ki:KeyInfo{not(Auth(ki))} -> (;ki)keyrepr -> (;ki)key

val LEAK:
ki:KeyInfo{not(Auth(ki))} -> (;ki)key -> (;ki)keyrepr

val ENC: ki:KeyInfo -> (;ki)key -> ad:(;ki)data -> rg:range -
p:(;ki,rg,ad) plain -> c:cipher
{ Length(c)=RangeCipher(ki,rg) /\ CTXT(ki,ad,p,c) }

val DEC: ki:KeyInfo -> (;ki)key -> ad:(;ki)data ->
c:cipher -> (;ki,CipherRange(ki,c),ad) plain Result
{ Auth(ki) => !p. res = Correct(p) <=> CTXT(ki,ad,p,c) }

Module AE_Plain
type (;ki:KeyInfo) data = b:bytes{…}
type (;ki:KeyInfo,rg:range,ad:data) plain

val COERCE:
ki:KeyInfo{not(Safe(ki))} -> rg:range -> ad:data ->
b:bytes{Length(b) in rg} ->(;ki,rg,ad) plain

val LEAK:
ki:KeyInfo{not(Safe(ki))} -> rg:range -> ad:data ->
(;ki,rg,ad) plain -> b:bytes{Length(b) in rg}

The Handshake: Challenges

• Negotiates protocol version, handshake method and algorithms,
authenticated encryption method and algorithms

• Authenticates peers from their certificates

• Derive connection keys

• Full handshake takes up to 3 rounds with 11 messages

• Abbreviated handshake often possible

– Go straight to connection-key derivation

– Do not negotiate and establish shared secret

• Key commitment

– The “Finished” messages already use the key being established

Internal
interface for
Handshake &
CCS protocols
(simplified)

type (;r:role,o:config) state // for each local instance of the protocol

type (;ki:KeyInfo) fragment // content type for the Handshake protocol

type (;ki:KeyInfo) ccs // content type for the Handshake protocol

// Control Interface

val init: r:role -> o:config -> (;r ,o) state

val resume: si:SessionInfo -> o:config -> (;Client,o) state

val rehandshake: (;Client,idle) state -> o:config -> (;Client,o) state

val rekey: (;Client,idle) state -> o:config -> (;Client,o) state

val request: (;Server,idle) state -> o:config -> (;Server,o) state

// Network Interface (output)

type (;r:role,o:config,ki:KeyInfo) outgoing =

| OutFragment of (;r,o) state * (;ki) fragment option

| OutCCS of s:(;r,o) state * (;ki) ccs * (;OutKi(s)) ccs_data

| OutComplete of s:(;r,o) state {Complete(r,o,s)}

| ...

val nextFragment:

r:role -> o:config -> ki:KeyInfo ->

(;r,o) state -> (;r,o,ki) outgoing

// Network Interface (input)

type (;r:role,o:config) incoming =

| InTLSVersion of (;r,o) state * ProtocolVersion

| InComplete of s:(;r,_) state {Complete(r,o,s)}

| ...

val recvFragment:

r:role -> o:config -> ki:KeyInfo ->

(;r,o) state -> (;ki) fragment -> (;r,o) incoming

val recvCCS:

r:role -> o:config -> ki:KeyInfo ->

(;r,o) state -> (;ki) ccs -> s:(;r,o) state * (;InKi(s)) ccs_data

• New keys
are delivered
before
handshake
completion

• Negotiated
parameters
can be read
off the state

• Refinements
imply precise
matching
conversations

The Handshake, ideally

• Our interface abstracts over many details of the Handshake protocol

– Handshake messages and their formats

– Certificate formats and public key infrastructure

– Database of past sessions, available for abbreviated handshakes

• A key index is safe when

– Its ciphersuite is cryptographically strong; and

– Its peer authentication materials are trustworthy
e.g. the private key for the peer certificate
is used only by compliant handshake sessions

• For instances with safe indexes, the (typed) idealized handshake

– Generates fresh abstract keys instead of calling the concrete KDF

– Drops “Complete” notifications not preceded by a send-Finished event
with matching parameters in a compliant peer instance.

Our codebase for TLS 1.2

• We trust

– The F# compiler

– System libraries, including those for
base cryptographic implementations (Windows CNG)

– A rather complex runtime environment (.NET)

• LOCs and performance numbers

• In principle, our approach applies to C code (at some cost)

The TLS API (aka ideal functionality)

• Our API is similar but more precise than others, say OpenSSL

– The RFC does not specify any API

– We give more control to the application code,
and reflect more details of the underlying TLS state
(lengths and fragmentation; authorization queries,…)

• More precise theorems

• More flexibility for experiments & interop

– We can implement more abstract APIs on top of it

– Sample verified applications using our API

• Secure RPCs (with one connection per call)

• Basic HTTPS clients and servers (for interop testing)

Conclusions (TLS)

• Implementation details cryptographically matter
– We re-discovered classic attacks, and found a few new ones

– We need automation to relate standard crypto assumptions
to concrete message processing

• Not yet another work on (simplified) TLS verification
– A full-fledged, interoperable implementation of TLS 1.2

– Verified down to concrete wire formats

– Reduced to common computational cryptographic assumptions

– Reasonable performance (but could be faster)
reuse of buffer space needs finer verification tools

• Yet not the final word on TLS
– RFCs and practice still evolving

– Attackers outside our model: timing, differential power, etc

– We stop at low-level crypto interfaces

Summary

• We verify protocol implementations by typechecking

• Verification is modular

• We use abstract types and refinements to specify cryptography

• We capture standard (probabilistic polynomial time) assumptions

• We precisely control composition using typed interfaces

• Except for new crypto libraries, proofs are automated & fast

• We are working towards applications certified using Coq

• New: self-certification for the typechecker

• Next: cryptographic transformations behind typed interfaces

• Our approach and libraries are language-independent

• So far we use F# & F7

