Introduction	e-voting

Helios

Modeling

Type-Based Verification of Electronic Voting Protocols

Véronique Cortier, LORIA - CNRS, Nancy

Joint EasyCrypt-F*-CryptoVerif School 2014

Joint work with Fabienne Eigner Steve Kremer, Matteo Maffei, Cyrille Wiedling

Electronic voting

Electronic voting promises

- Convenient, efficient and secure facility for recording and tallying votes (Computers compute better than humans)
- for a variety of types of elections : from small committees or on-line communities through to full-scale national elections

"It's not who votes that counts. It's who counts the votes."

Already used e.g. in Estonia, Norway, USA, France, Australia. Banned in Germany, Ireland, UK. Helios

Modeling

Two main families for e-voting

Voting machines

- Voters have to go to a voting station
- External authentication system (e.g. ID card)

Internet voting

- Voters vote from home
- From their own computers
- Systems in use : Norwegian protocol, Estonian protocol, Helios, ...

Introduction on e-voting	Helios	Modeling	Typing
oo●o	0000	00000	000000

Confidentiality of the votes

Vote privacy

"No one should know how I voted"

イロト イポト イヨト イヨト 二油

Introduction on e-voting	I
0000	

lodeling 00000

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Confidentiality of the votes

Vote privacy

"No one should know how I voted"

lelios

3

Better : Receipt-freeness / Coercion-resistance "No one should know how I voted, even if I am willing to tell my vote!"

Introduction	on	e-voting
0000		

Helios

ıg

Confidentiality of the votes

Vote privacy

"No one should know how I voted"

Better : Receipt-freeness / Coercion-resistance "No one should know how I voted, even if I am willing to tell my vote!"

- vote buying
- coercion

・ロト ・ 理 ・ ・ ヨ ・ ・

Introduction	on	e-voting
0000		

Helios

Modeling

Confidentiality of the votes

Vote privacy

"No one should know how I voted"

Better : Receipt-freeness / Coercion-resistance "No one should know how I voted, even if I am willing to tell my vote!"

- vote buying
- coercion

Everlasting privacy : no one should know my vote, even when the cryptographic keys will be eventually broken.

Introduction on e-voting	Helios	Modeling	Typing
	0000	00000	000000
Verifiability			

End-to-end Verifiability : the result corresponds to the votes intended by the voters, and nothing else.

- Individual Verifiability : Each voter can check that his/her ballot is in the ballot box.
- Universal Verifiability : Everyone can check that the result corresponds to the content of the ballot box.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

Introduction on e-voting	Helios	Modeling	Typing
	0000	00000	000000
Verifiability			

End-to-end Verifiability : the result corresponds to the votes intended by the voters, and nothing else.

- Individual Verifiability : Each voter can check that his/her ballot is in the ballot box.
- Universal Verifiability : Everyone can check that the result corresponds to the content of the ballot box.

You should verify the election, not the system.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Introduction on e-voting	Helios	Modeling	Typing
0000	●000	00000	000000

A e-voting system : Helios

http://heliosvoting.org/

😻 📰 📰

App	olications Places	System 😻		🔛 🕼 💪 16 °C Sat 13 Nov, 5:02 P	A
0		Voters & I	allot Tracking Center for Helios Demo - He	elios - Mozilla Firefox	ł
Eile Eo	sit ⊻iew History	Bookmarks	Tools Help		
4 🕸	🗠 C 🖸 🔮	http://	ote.heliosvoting.org/helios/elections/a083298c-el	f3c-11df-88ee-123 🗇 🗸 🚺 🗸 Google 🛛 🔍 🥸	v
	Helios I Registration search: 2 cast vote Voters 1 - 3 (Demo — 1 Is Open. s of 3)	helic	nter (back to election)	
		Name	Smi	art Ballot Tracker	
	Ben Sm	yth	-		
	🔤 Michael	Rusinowitch	Vo5v5JobDV0TiqF8wXaiwc8nSV68Vwg	gu20guRfU6cQw (<u>xiew</u>)	
	🔤 Veroniq	ue Cortier	v9OpdFr230BSypcF/BYj+c8m4qpV9/U	UZ7eH+7/a7HSE (xiew)	
	not logged in. About Helios	[log in] Help!			

Developed by B. Adida *et al*, already in use :

- Election at Louvain University Princeton
- Election of the IACR board (major association in Cryptography)

Voters & Ballot Trackin.

Introduction on e-voting	Helios	Modeling	Typing
0000	o●oo	00000	000000
Behavior of Helios	s (simplified)		

Bulletin Board

Alice	$\{v_A\}_{pk(E)}$	$v_A = 0$ or 1
Bob	$\{v_B\}_{pk(E)}$	$v_B = 0$ or 1
Chris	$\{v_C\}_{pk(E)}$	$v_C = 0$ or 1

 $\mathsf{pk}(E)$: public key, the private key being shared among trustees. \mathbf{z}

Introduction on e-voting	Helios	Modeling	Typing
0000	o●oo	00000	000000
Behavior of Helios	(simplified)		

 $\mathsf{pk}(E)$: public key, the private key being shared among trustees. \mathbf{z}

Introduction on e-voting	Helios	Modeling	Typing
0000	o●oo	00000	000000
Behavior of Helios	s (simplified)		

Bulletin BoardAlice $\{v_A\}_{pk(E)}$ $v_A = 0 \text{ or } 1$ Bob $\{v_B\}_{pk(E)}$ $v_B = 0 \text{ or } 1$ Chris $\{v_C\}_{pk(E)}$ $v_C = 0 \text{ or } 1$ David $\{v_D\}_{pk(E)}$ $v_D = 0 \text{ or } 1$

pk(E) : public key, the private key being shared among trustees. =

Introduction on e-voting	Helios	Modeling	Typing
0000	o●oo	00000	000000
Behavior of Helios	(simplified)		

Bulletin BoardAlice $\{v_A\}_{pk(E)}$ $v_A = 0 \text{ or } 1$ Bob $\{v_B\}_{pk(E)}$ $v_B = 0 \text{ or } 1$ Chris $\{v_C\}_{pk(E)}$ $v_C = 0 \text{ or } 1$ David $\{v_D\}_{pk(E)}$ $v_D = 0 \text{ or } 1$

Phase 2 : Tallying using homomorphic encryption (El Gamal)

$$\prod_{i=1}^n \{v_i\}_{\mathsf{pk}(E)} = \{\sum_{i=1}^n v_i\}_{\mathsf{pk}(E)} \qquad \text{based on } g^a * g^b = g^{a+b}$$

 \rightarrow Only the final result needs to be decrypted !

 $\mathsf{pk}(E)$: public key, the private key being shared among trustees. \mathbb{R}

Introduction on e-voting	Helios	Modeling	Typing
0000	oo●o	00000	000000

This is oversimplified !

Result : $\{v_A + v_B + v_C + v_D + \cdots\}_{\mathsf{pk}(E)}$

Introduction on e-voting	Helios	Modeling	Typing
0000	oo●o	00000	000000

This is oversimplified !

Result : $\{v_A + v_B + v_C + 100 + \cdots\}_{pk(E)}$

A malicious voter can cheat!

Introduction on e-voting	Helios	Modeling	Typing
0000	00●0	00000	000000

This is oversimplified !

Result :
$$\{v_A + v_B + v_C + v_D + \cdots\}_{\mathsf{pk}(E)}$$

A malicious voter can cheat !

In Helios : use of Zero Knowledge Proof

$$\{v_D\}_{\mathsf{pk}(E)}, \mathsf{ZKP}\{v_D = 0 \text{ or } 1\}$$

Introduction on e-voti	ng	Helios ○○○●	Modeling 00000	Typing 000000

Other e-voting protocols

Pure electronic voting protocols

- Civitas (both verifiable and coercion-resistant)
- Belenios (a ballot-stuffing resistant variant of Helios)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

- Norwegian protocol (developed by Scytl)
- FOO, ...

Hybrid systems

- Pret à voter
- Scantegrity
- ...

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	●0000	000000

How to state formally :

"No one should know my vote (0 or 1)"?

Idea 1 : An attacker should not learn the value of my vote.

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	●0000	000000

How to state formally :

"No one should know my vote (0 or 1)"?

ヘロン 人間と 人間と 人間とう

Idea 1 : An attacker should not learn the value of my vote. But everyone knows 0 and 1!

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	●0000	000000

How to state formally :

"No one should know my vote (0 or 1)"?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker cannot see the difference when voters aredifferent $Voter(A, 0) \approx Voter(B, 0)$

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	●0000	000000

How to state formally :

"No one should know my vote (0 or 1)"?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker cannot see the difference when voters aredifferent $Voter(A, 0) \approx Voter(B, 0)$

Who voted might be public (*cf* Helios)

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	●0000	000000

How to state formally :

"No one should know my vote (0 or 1)"?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker cannot see the difference when voters aredifferent $Voter(A, 0) \approx Voter(B, 0)$

Idea 3 : An attacker cannot see the difference when I vote 0 or 1. $Voter(A, 0) \approx Voter(A, 1)$

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	●0000	000000

How to state formally :

"No one should know my vote (0 or 1)"?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker cannot see the difference when voters aredifferent $Voter(A, 0) \approx Voter(B, 0)$ Idea 3 : An attacker cannot see the difference when I vote 0 or 1.

Voter $(A, 0) \approx$ Voter(A, 1)

• The attacker always sees the difference since the tally differs.

• Unanimity does break privacy.

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	●0000	000000

How to state formally :

"No one should know my vote (0 or 1)"?

Idea 1 : An attacker should not learn the value of my vote.

Idea 4 : An attacker cannot see when votes are swapped.

 $Voter(A, 0) | Voter(B, 1) \approx Voter(A, 1) | Voter(B, 0)$

S. Kremer & M. Ryan

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	○●○○○	000000
How to formalize	end_to_end veri	fiability?	

- For any announced result r
- For all voters that believe their vote has been counted VoterHappy(*id*₁, *v*₁),..., VoterHappy(*id*_n, *v*_n)

We have that $r = v_1 + \cdots + v_n + r'$ where r' corresponds to the votes casted by compromised voters.

イロト (母) (日) (日) (日) (の)

 \rightarrow Requires to count.

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	oo●oo	000000

Difficulties when analysing e-voting protocols

Primitives

- homomorphic encryption
- blind signatures
- zero-knowledge proofs
- AC operators
- everything combined (example of the Norwegian protocol)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Properties

- vote privacy : requires equivalence-based properties
- verifiability : requires to count

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	000●0	000000
What formal metho	ds can do?		

Few tools for equivalence

- ProVerif : often needs to be combined with ProSwapper \rightarrow does not support AC properties in practice
- Some more prototypes tools : Akiss, APTE, SPEC
 → limited in the equational theories they can handle in practice

 \rightarrow No tool support for homomorphic encryption !

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	000●0	000000
What formal methods	can do?		

Few tools for equivalence

- ProVerif : often needs to be combined with ProSwapper
 → does not support AC properties in practice
- Some more prototypes tools : Akiss, APTE, SPEC
 → limited in the equational theories they can handle in
 practice
- \rightarrow No tool support for homomorphic encryption !

Proofs by hand

[CSF 2011, POST 2012]

- Helios
- Norwegian protocol
- \rightarrow tedious and error-prone

Almost no proofs of verifiability.

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	0000●	000000
Another approach : pro	oof by typing		

How to use type systems to prove security of e-voting

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The special case of F^* and rF^* .

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	00000	●00000
How to type End2	end verifiability		

- For any announced result *r*
 - For all voters that believe their vote has been counted VoterHappy(*id*₁, *v*₁),..., VoterHappy(*id*_n, *v*_n)

Then $r = v_1 + \cdots + v_n + r'$

where r' corresponds to the votes casted by compromised voters.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

We split End2end verifiability into three (stronger) properties

- Individual verifiability
- Universal verifiability

0000	0000	00000	00000	
Lieux testa a Fuel Oenel constitue la litta a				

How to type End2end verifiability

- For any announced result r
- For all voters that believe their vote has been counted VoterHappy(*id*₁, *v*₁),...,VoterHappy(*id*_n, *v*_n)

Then $r = v_1 + \cdots + v_n + r'$

where r' corresponds to the votes casted by compromised voters.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

We split End2end verifiability into three (stronger) properties

- Individual verifiability
- Universal verifiability
- No clash property

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	00000	o●oooo
Individual Varifiak			

```
voter(id, v) := assume Vote(id, v)
... let b = in ...
assume MyBallot(id, v, b)
... send(...) ... receive(...) ... check ...
assert VoterHappy(id, v, b, bb)
```

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	00000	⊙●0000
Individual Verifiability			

```
voter(id, v) := assume Vote(id, v)
... let b = in ...
assume MyBallot(id, v, b)
... send(···) ... receive(···) ... check ...
assert VoterHappy(id, v, b, bb)
```

VoterHappy(id, v, b, BB) := $Vote(id, v) \land \exists b \in bb.MyBallot(id, v, b)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Introduction on e-voting Helios Modeling Typing 0000 000 0000 0000 00000

Universal Verifiability

"If the judge is happy, the result corresponds to the ballots on the board"

▲ロト ▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ のへの

JudgeHappy(bb, r) := $\exists vbb.(GoodSanitization(<math>bb, vbb$) \land GoodCounting(vbb, r))
 Introduction on e-voting
 Helios
 Modeling
 Typing

 0000
 0000
 00000
 000000

Universal Verifiability

"If the judge is happy, the result corresponds to the ballots on the board"

 $\mathsf{JudgeHappy}(bb, r) := \exists vbb.(\mathsf{GoodSanitization}(bb, vbb) \land \mathsf{GoodCounting}(vbb, r))$

$$\begin{aligned} \mathsf{GoodCounting}(vbb, r) &:= \\ vbb =_m \{\mathsf{Wrap}(v_1), \dots, \mathsf{Wrap}(v_n)\} \\ r &= v_1 + \dots + v_n \end{aligned}$$

GoodSanitization(bb, vbb) : no honest ballot has been removed.

 Introduction on e-voting
 Helios
 Modeling
 Typing

 0000
 0000
 00000
 00000

Universal Verifiability

"If the judge is happy, the result corresponds to the ballots on the board"

 $\mathsf{JudgeHappy}(bb, r) := \exists vbb.(\mathsf{GoodSanitization}(bb, vbb) \land \mathsf{GoodCounting}(vbb, r))$

$$\begin{aligned} \mathsf{GoodCounting}(vbb, r) &:= \\ vbb =_m \{\mathsf{Wrap}(v_1), \dots, \mathsf{Wrap}(v_n)\} \\ r &= v_1 + \dots + v_n \end{aligned}$$

GoodSanitization(bb, vbb) : no honest ballot has been removed.

Theorem

Individual verifiability, universal verifiability and no clash entail end-to-end verifiability

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	00000	000●00
Privacy			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (POPL'14, instantiated to vote privacy) Let $P = fun(vA, vB) \rightarrow System[Alice(vA), Bob(vB)].$ If $\emptyset \vdash P(\{\langle Lv_1, Rv_2 \rangle\}, \{\langle Lv_2, Rv_1 \rangle\}) \rightsquigarrow I_{eq}$ then $P(v_1, v_2) \approx P(v_2, v_1)$

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	00000	000●00
Privocy			

Theorem (POPL'14, instantiated to vote privacy)

Let $P = fun(vA, vB) \rightarrow System[Alice(vA), Bob(vB)].$ If $\emptyset \vdash P(\{\langle Lv_1, Rv_2 \rangle\}, \{\langle Lv_2, Rv_1 \rangle\}) \rightsquigarrow I_{eq}$ then

 $P(v_1,v_2)\approx P(v_2,v_1)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Our contribution : Design of a sealed-based library for voting

- homomorphic encryption
- proofs of statements such as a + b = b + a are discharged to Z3

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	00000	0000●0
Application to Helios			

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ●

Several variants of Helios have been analyzed automatically

- homomorphic encryption
- mixnet tallying

for both verifiability and privacy.

Introduction on e-voting	Helios	Modeling	Typing
0000	0000	00000	00000●
Future work			

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

More properties

- eligibility verifiability
- coercion resistance

More primitives

- zero-knowledge proofs
- blind signatures
- theory of the Norwegian protocol

More protocols

- Norwegian protocol
- Civitas