
Introduction on e-voting Helios Modeling Typing

Type-Based Verification of Electronic Voting
Protocols

Véronique Cortier, LORIA - CNRS, Nancy

Joint EasyCrypt-F*-CryptoVerif School 2014

Joint work with Fabienne Eigner Steve Kremer, Matteo Maffei,
Cyrille Wiedling

1/20

Introduction on e-voting Helios Modeling Typing

Electronic voting

Electronic voting promises

Convenient, efficient and secure
facility for recording and tallying
votes (Computers compute better
than humans)

for a variety of types of elections :
from small committees or on-line
communities through to full-scale
national elections

Already used e.g. in Estonia, Norway, USA, France, Australia.
Banned in Germany, Ireland, UK.

2/20

Introduction on e-voting Helios Modeling Typing

Two main families for e-voting

Voting machines

Voters have to go to a voting station

External authentication system (e.g. ID
card)

Internet voting

Voters vote from home

From their own computers

Systems in use : Norwegian protocol,
Estonian protocol, Helios, ...

3/20

Introduction on e-voting Helios Modeling Typing

Confidentiality of the votes

Vote privacy

”No one should know how I voted”

Better : Receipt-freeness / Coercion-resistance

”No one should know how I voted,
even if I am willing to tell my vote ! ”

vote buying

coercion

Everlasting privacy : no one should know my vote, even when the
cryptographic keys will be eventually broken.

4/20

Introduction on e-voting Helios Modeling Typing

Confidentiality of the votes

Vote privacy

”No one should know how I voted”

Better : Receipt-freeness / Coercion-resistance

”No one should know how I voted,
even if I am willing to tell my vote ! ”

vote buying

coercion

Everlasting privacy : no one should know my vote, even when the
cryptographic keys will be eventually broken.

4/20

Introduction on e-voting Helios Modeling Typing

Confidentiality of the votes

Vote privacy

”No one should know how I voted”

Better : Receipt-freeness / Coercion-resistance

”No one should know how I voted,
even if I am willing to tell my vote ! ”

vote buying

coercion

Everlasting privacy : no one should know my vote, even when the
cryptographic keys will be eventually broken.

4/20

Introduction on e-voting Helios Modeling Typing

Confidentiality of the votes

Vote privacy

”No one should know how I voted”

Better : Receipt-freeness / Coercion-resistance

”No one should know how I voted,
even if I am willing to tell my vote ! ”

vote buying

coercion

Everlasting privacy : no one should know my vote, even when the
cryptographic keys will be eventually broken.

4/20

Introduction on e-voting Helios Modeling Typing

Verifiability

End-to-end Verifiability : the result corresponds to the votes
intended by the voters, and nothing else.

Individual Verifiability : Each voter can check that his/her
ballot is in the ballot box.

Universal Verifiability : Everyone can check that the result
corresponds to the content of the ballot box.

You should verify the election, not the system.

5/20

Introduction on e-voting Helios Modeling Typing

Verifiability

End-to-end Verifiability : the result corresponds to the votes
intended by the voters, and nothing else.

Individual Verifiability : Each voter can check that his/her
ballot is in the ballot box.

Universal Verifiability : Everyone can check that the result
corresponds to the content of the ballot box.

You should verify the election, not the system.

5/20

Introduction on e-voting Helios Modeling Typing

A e-voting system : Helios

http ://heliosvoting.org/

Developed by B. Adida
et al, already in use :

Election at
Louvain University
Princeton

Election of the
IACR board
(major association
in Cryptography)

6/20

Introduction on e-voting Helios Modeling Typing

Behavior of Helios (simplified)

Phase 1 : voting

Bulletin Board
Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1

Phase 2 : Tallying using homomorphic encryption (El Gamal)
n∏

i=1

{vi}pk(E) = {
n∑

i=1

vi}pk(E)

Only the final result needs to be decrypted.

pk(E) : public key, the private key being shared among trustees.
7/20

Introduction on e-voting Helios Modeling Typing

Behavior of Helios (simplified)

Phase 1 : voting

{vD}pk(E)

Bulletin Board
Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1

Phase 2 : Tallying using homomorphic encryption (El Gamal)
n∏

i=1

{vi}pk(E) = {
n∑

i=1

vi}pk(E)

Only the final result needs to be decrypted.

pk(E) : public key, the private key being shared among trustees.
7/20

Introduction on e-voting Helios Modeling Typing

Behavior of Helios (simplified)

Phase 1 : voting

Bulletin Board
Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1
David {vD}pk(E) vD = 0 or 1

Phase 2 : Tallying using homomorphic encryption (El Gamal)
n∏

i=1

{vi}pk(E) = {
n∑

i=1

vi}pk(E)

Only the final result needs to be decrypted.

pk(E) : public key, the private key being shared among trustees.
7/20

Introduction on e-voting Helios Modeling Typing

Behavior of Helios (simplified)

Phase 1 : voting

Bulletin Board
Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1
David {vD}pk(E) vD = 0 or 1
... ...

Phase 2 : Tallying using homomorphic encryption (El Gamal)
n∏

i=1

{vi}pk(E) = {
n∑

i=1

vi}pk(E) based on ga ∗ gb = ga+b

→ Only the final result needs to be decrypted !

pk(E) : public key, the private key being shared among trustees.
7/20

Introduction on e-voting Helios Modeling Typing

This is oversimplified !

{vD}pk(E)

Bulletin Board
Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1
David {vD}pk(E)

... ...

Result : {vA + vB + vC + vD + · · · }pk(E)

In Helios : use of Zero Knowledge Proof

{vD}pk(E),ZKP{vD = 0 or 1}

8/20

Introduction on e-voting Helios Modeling Typing

This is oversimplified !

{vD}pk(E)

Bulletin Board
Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1
David {vD}pk(E) vD = 100
... ...

Result : {vA + vB + vC + 100 + · · · }pk(E)

A malicious voter can cheat !

In Helios : use of Zero Knowledge Proof

{vD}pk(E),ZKP{vD = 0 or 1}

8/20

Introduction on e-voting Helios Modeling Typing

This is oversimplified !

{vD}pk(E)

Bulletin Board
Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1
David {vD}pk(E) vD = 100
... ...

Result : {vA + vB + vC + vD + · · · }pk(E)

A malicious voter can cheat !

In Helios : use of Zero Knowledge Proof

{vD}pk(E),ZKP{vD = 0 or 1}

8/20

Introduction on e-voting Helios Modeling Typing

Other e-voting protocols

Pure electronic voting protocols

Civitas (both verifiable and coercion-resistant)

Belenios (a ballot-stuffing resistant variant of Helios)

Norwegian protocol (developed by Scytl)

FOO, ...

Hybrid systems

Pret à voter

Scantegrity

...

9/20

Introduction on e-voting Helios Modeling Typing

How to model vote privacy ?

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.

S. Kremer & M. Ryan

10/20

Introduction on e-voting Helios Modeling Typing

How to model vote privacy ?

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.
But everyone knows 0 and 1 !

S. Kremer & M. Ryan

10/20

Introduction on e-voting Helios Modeling Typing

How to model vote privacy ?

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker cannot see the difference when voters are
different Voter(A, 0) ≈ Voter(B, 0)

S. Kremer & M. Ryan

10/20

Introduction on e-voting Helios Modeling Typing

How to model vote privacy ?

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker cannot see the difference when voters are
different Voter(A, 0) ≈ Voter(B, 0)

Who voted might be public (cf Helios)

S. Kremer & M. Ryan

10/20

Introduction on e-voting Helios Modeling Typing

How to model vote privacy ?

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker cannot see the difference when voters are
different Voter(A, 0) ≈ Voter(B, 0)
Idea 3 : An attacker cannot see the difference when I vote 0 or 1.

Voter(A, 0) ≈ Voter(A, 1)

S. Kremer & M. Ryan

10/20

Introduction on e-voting Helios Modeling Typing

How to model vote privacy ?

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker cannot see the difference when voters are
different Voter(A, 0) ≈ Voter(B, 0)
Idea 3 : An attacker cannot see the difference when I vote 0 or 1.

Voter(A, 0) ≈ Voter(A, 1)

The attacker always sees the difference since the tally differs.

Unanimity does break privacy.

S. Kremer & M. Ryan

10/20

Introduction on e-voting Helios Modeling Typing

How to model vote privacy ?

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker cannot see the difference when voters are
different Voter(A, 0) ≈ Voter(B, 0)
Idea 3 : An attacker cannot see the difference when I vote 0 or 1.

Voter(A, 0) ≈ Voter(A, 1)
Idea 4 : An attacker cannot see when votes are swapped.

Voter(A, 0) | Voter(B, 1) ≈ Voter(A, 1) | Voter(B, 0)

S. Kremer & M. Ryan

10/20

Introduction on e-voting Helios Modeling Typing

How to formalize end-to-end verifiability ?

For any announced result r

For all voters that believe their vote has been counted
VoterHappy(id1, v1), . . . ,VoterHappy(idn, vn)

We have that r = v1 + · · · + vn+r ′

where r ′ corresponds to the votes casted by compromised voters.

→ Requires to count.

11/20

Introduction on e-voting Helios Modeling Typing

Difficulties when analysing e-voting protocols

Primitives

homomorphic encryption

blind signatures

zero-knowledge proofs

AC operators

everything combined (example of the Norwegian protocol)

Properties

vote privacy : requires equivalence-based properties

verifiability : requires to count

12/20

Introduction on e-voting Helios Modeling Typing

What formal methods can do ?

Few tools for equivalence

ProVerif : often needs to be combined with ProSwapper
→ does not support AC properties in practice

Some more prototypes tools : Akiss, APTE, SPEC
→ limited in the equational theories they can handle in
practice

→ No tool support for homomorphic encryption !

Proofs by hand [CSF 2011, POST 2012]

Helios

Norwegian protocol

→ tedious and error-prone

Almost no proofs of verifiability.

13/20

Introduction on e-voting Helios Modeling Typing

What formal methods can do ?

Few tools for equivalence

ProVerif : often needs to be combined with ProSwapper
→ does not support AC properties in practice

Some more prototypes tools : Akiss, APTE, SPEC
→ limited in the equational theories they can handle in
practice

→ No tool support for homomorphic encryption !

Proofs by hand [CSF 2011, POST 2012]

Helios

Norwegian protocol

→ tedious and error-prone

Almost no proofs of verifiability.
13/20

Introduction on e-voting Helios Modeling Typing

Another approach : proof by typing

How to use type systems to prove security of e-voting

The special case of F∗ and rF∗.

14/20

Introduction on e-voting Helios Modeling Typing

How to type End2end verifiability

For any announced result r

For all voters that believe their vote has been counted
VoterHappy(id1, v1), . . . ,VoterHappy(idn, vn)

Then r = v1 + · · · + vn+r ′

where r ′ corresponds to the votes casted by compromised voters.

We split End2end verifiability into three (stronger) properties

Individual verifiability

Universal verifiability

No clash property

15/20

Introduction on e-voting Helios Modeling Typing

How to type End2end verifiability

For any announced result r

For all voters that believe their vote has been counted
VoterHappy(id1, v1), . . . ,VoterHappy(idn, vn)

Then r = v1 + · · · + vn+r ′

where r ′ corresponds to the votes casted by compromised voters.

We split End2end verifiability into three (stronger) properties

Individual verifiability

Universal verifiability

No clash property

15/20

Introduction on e-voting Helios Modeling Typing

Individual Verifiability

voter(id , v) := assume Vote(id , v)
... let b = in ...

assume MyBallot(id , v , b)
... send(· · ·) ... receive(· · ·) ... check ...

assert VoterHappy(id , v , b, bb)

VoterHappy(id , v , b,BB) :=

Vote(id , v) ∧ ∃b ∈ bb.MyBallot(id , v , b)

16/20

Introduction on e-voting Helios Modeling Typing

Individual Verifiability

voter(id , v) := assume Vote(id , v)
... let b = in ...

assume MyBallot(id , v , b)
... send(· · ·) ... receive(· · ·) ... check ...

assert VoterHappy(id , v , b, bb)

VoterHappy(id , v , b,BB) :=

Vote(id , v) ∧ ∃b ∈ bb.MyBallot(id , v , b)

16/20

Introduction on e-voting Helios Modeling Typing

Universal Verifiability

“If the judge is happy,
the result corresponds to the ballots on the board”

JudgeHappy(bb, r) :=
∃vbb.(GoodSanitization(bb, vbb) ∧ GoodCounting(vbb, r))

GoodCounting(vbb, r) :=
vbb =m {Wrap(v1), . . . ,Wrap(vn)}
r = v1 + · · · + vn

GoodSanitization(bb, vbb) : no honest ballot has been removed.

Theorem

Individual verifiability, universal verifiability and no clash entail
end-to-end verifiability

17/20

Introduction on e-voting Helios Modeling Typing

Universal Verifiability

“If the judge is happy,
the result corresponds to the ballots on the board”

JudgeHappy(bb, r) :=
∃vbb.(GoodSanitization(bb, vbb) ∧ GoodCounting(vbb, r))

GoodCounting(vbb, r) :=
vbb =m {Wrap(v1), . . . ,Wrap(vn)}
r = v1 + · · · + vn

GoodSanitization(bb, vbb) : no honest ballot has been removed.

Theorem

Individual verifiability, universal verifiability and no clash entail
end-to-end verifiability

17/20

Introduction on e-voting Helios Modeling Typing

Universal Verifiability

“If the judge is happy,
the result corresponds to the ballots on the board”

JudgeHappy(bb, r) :=
∃vbb.(GoodSanitization(bb, vbb) ∧ GoodCounting(vbb, r))

GoodCounting(vbb, r) :=
vbb =m {Wrap(v1), . . . ,Wrap(vn)}
r = v1 + · · · + vn

GoodSanitization(bb, vbb) : no honest ballot has been removed.

Theorem

Individual verifiability, universal verifiability and no clash entail
end-to-end verifiability

17/20

Introduction on e-voting Helios Modeling Typing

Privacy

Theorem (POPL’14, instantiated to vote privacy)

Let P = fun(vA, vB) → System[Alice(vA),Bob(vB)].

If ∅ ` P({〈Lv1,Rv2〉}, {〈Lv2,Rv1〉}) Ieq then

P(v1, v2) ≈ P(v2, v1)

Our contribution : Design of a sealed-based library for voting

homomorphic encryption

proofs of statements such as a + b = b + a
are discharged to Z3

18/20

Introduction on e-voting Helios Modeling Typing

Privacy

Theorem (POPL’14, instantiated to vote privacy)

Let P = fun(vA, vB) → System[Alice(vA),Bob(vB)].

If ∅ ` P({〈Lv1,Rv2〉}, {〈Lv2,Rv1〉}) Ieq then

P(v1, v2) ≈ P(v2, v1)

Our contribution : Design of a sealed-based library for voting

homomorphic encryption

proofs of statements such as a + b = b + a
are discharged to Z3

18/20

Introduction on e-voting Helios Modeling Typing

Application to Helios

Several variants of Helios have been analyzed automatically

homomorphic encryption

mixnet tallying

for both verifiability and privacy.

19/20

Introduction on e-voting Helios Modeling Typing

Future work

More properties

eligibility verifiability

coercion resistance

More primitives

zero-knowledge proofs

blind signatures

theory of the Norwegian protocol

More protocols

Norwegian protocol

Civitas

20/20

	Introduction on e-voting
	

	Helios
	

	Modeling
	

	Typing
	

