e

Type-based Verification at Scale

miTLS: a verified reference implementation of TLS

Antoine Delignat-Lavaud

with
Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, ° |

) C) , J-y. Microsoft Research
Alfredo Pironti, Pierre-Yves Strub, Santiago Zanella Beguelin)

JOINT CENTRE

https://www.miTLS.org L= iKkilea

http://software.imdea.org/
http://software.imdea.org/
http://www.inria.fr/
http://www.inria.fr/
https://www.mitls.org/

Transport Layer Security (1994—)

The most widely deployed
cryptographic protocol?
HTTPS, 802.1x, VPNs, files, mail, VolIP ...

20 years of attacks, fixes, and extensions

1994
1995
1999
20006
2008

Netscape's Secure Sockets Layer
SSL3

TLS1.0 (RFC2246, =SSL3)

TLS1.1 (RFC4346)

TLS1.2 (RFC5246)

Many implementations

SChannel, OpenSSL, NSS, GnuTLS, JSSE, PolarSSL
many patches every year; Snowden allegations

Many papers

Well-understood, detailed specs
many security theorems...

mostly for small simplified models of TLS

= :

\

[Bl == e

d

ok L

The Heartbleed Bug

instant messaging (M) and some virtual private networks (VPNs).

The Heartbleed Bug is a serious vulnerability in the popular OpenSSL cryptographic
software library. This weakness allows stealing the information protected, under normal
conditions, by the SSL/TLS encryption used to secure the Internet. S5L/TLS provides
communication security and privacy over the Internet for applications such as web, email,

v

What can still possibly go wrong?

Infrastructure
certificate management (PKI)

Protocol Logic TLS Cryptography
e.g. ambiguous messages DESIGN e.g. not enough randomness
* cause clients and server write applet to realize
to negotiate weak sessions adaptive attack (BEAST)
Implementation Bugs Weak Algorithms
many critical errors MDS5, PKCS1, RC4, ...
Application

HTTPS clients & servers

SEQUENCE (3 elem)
. SEQUENCE (& elem)

[0] (1 elem)

INTEGEER 2
INTEGER (141 bit) 149%2258819486064224988303096848576164759414
SEQUENCE (2 elem)

CBJECT IDEWNTIFIEERE 1.2.840.113545.1.1.5%

HNULL
. . SEQUENCE (2 elem)
5ET 1 elem
Binary encoding . Gelem)
Standard OBJECT IDENTIFIER 2.5.4.10

PrintableString AlphaS55L
SET (1 elem)
SEQUENCE (2 elem)
. OBJECT IDENTIFIER 2.5.4.3
AnC|ent (1984) PrintakleString RlphaSsSL CR - G2
SEQUENCE (2 elem)
UTCTime 2013-06-02 17:27:55 UIC
UTCTime 2017-06-02 17:27:55 UTC
SEQUENCE (2 e=lem)
<Tag, Length, Value> oEcE 2 2
SEQUENCE (2 elem)
TIFIER 2.5.4.11

D|St|ngU|Shed rules - ring Domain Control Validated
(DER) unique E?:}[ER 2.5.4.3

. | . ngy *.ht.vc
SEQUE. = ___,
serialization e vENcE (5 ciem)
CBJECT IDENTIFIER 1.2.840.113549.1.1.1
HULL
BIT STRING (1 elem)
SEQUENCE (2 elem)
INTEGER (2048 bit) 250700161264006893481798577011506154
INTEGER &5537
[3] (1 elem)
SEQUENCE (9 elem)
SEQUENCE (3 elem)

Infrastructure
Certificates are hard to check

NSS Signature Forgery (August 2014)

Gen

Certificate Viewer:"antoine.delignat-lavaud.fr

ral | Details

Certificate Hierarchy

ahttp://www.valicert.com/
aStarfield Secure Certification Authority
4Prosecco Malicious CA
antoine.delignat-lavaud.fr

Certlllcat Fields

! Subject Public Key Algorithm

. Subject's Public Key

E-lE:ctensm-ns
E"Certiﬁcate Basic Constraints
E--Certificate Key Usage
E--Cer‘ciﬁcate Authority Key [dentifier

-~Certificate Signature Algorithm

Certificate Signature Value

Field Value

Size: 128 Bytes / 1024 Bits
a0 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 00
00 Q0 00 00 00 00 00 00 Q0 00 00 00 00 00 Q0 Q0
a0 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 A0
a0 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 00
00 00 00 00 00 00 00 00 Q0 00 00 00 00 00 Q0 Q0
00 00 00 00 00 01 00 10 28 0Oa £5 37 7e 30 31 03
c aa 3e 4 1b 88 d2 48 kd ab 11 7f ke ac 40 e7
59 37 7Tb 68 c7 ef b5 2a 7a 71 1b 7c 7b 53 53 Tb

Export...

PKCS#1 Paddin

e o ffffff
il
ffff FFEFFEFFeFFerFrerrerreerres i
FFFEFFFEFFFEFFFEFFEFFEFFFFFFFFFFFFF000100307B300706052b0e03021a

04dc014619f54413545f84977549d01efcf664cc4clbb
Signed hash

Sign: S = (padding||oid||h)~d mod N
Verify. S”e mod N (e.g. e=3)

Infrastructure
Certificates are hard to check

NSS Signature Forgery (August 2014)

Certificate Viewer:"antoine.delignat-lavaud.fr

General | Details

CertW

ahttp://www.valicert.com/
aStarfield Secure Certification Authority
4Prosecco Malicious CA
edelignat-lavaud.fr

Certlllcate Fields

"CA Certificate

C rtificate Basic Constraints
E--Certificate Key Usage
E--Cer‘ciﬁcate Authority Key ldentifier
-~Certificate Signature Algorithm
Certificate Signature Value v
Field Value

Size: 128 Bseed
00 _0&-T0 00 00 00 00 00 00 00 00 00 00 00 00 09
0 00 00 Q0 00 00 00 00 00 00 Q0 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 Q0 00 00 00 00 00 QQ Q0 00 00 00 00 00 QQ Q0
DD 00 00 00 00 01 00 10 28 0Oa £5 37 Te 30 31 03
qa 3e f4 1b 88 d2 48 bd ab 11 7f be ac 40 e7
b~&8 c7 ef b5 2a 7a 71 1b 7c Tb 53 54 7b

Export...

PKCS#1 Padding Injection of junk bytes
+ hash algorithm OID Ignored by ASN.1 parser

0100307B300706052b0e03 xxxxxxxxxxxxxxxxxxxxxx

1,9,9,0,0.0.0.0.90.9,:9,0.0.:0.0.0.9.9,0,0,0.0,:0.0.0.9.9,.9,:9,0.0.0.0.0.9.0.9,:9,0.0.0,0.0.9.0,9,0,0,0.0.0.0.0.9.9,0,0,0,0 .0 ¢
1,9,9,0,0,0.0.0.90.9,:9,0.0.0.0.0.90.9,0,0,0.0,0.0.0.9.9,.0,.9,0.0.0.0.0.90.9.9:9,0.0.0,0.0.90.0,.0,0,0,0.0.0.0.0.9.9,0,0,0.0 0 ¢
1,9,9,0,0.0.0.0.9.9,:9,0.0.0.0.0.9.9,0,0,0,0,0,0.0.9.9.9.:9.9.0.9.0.0.9.9.9.9.9.9.9.9.0.0.9,9,9,9,9,0.0.¢.0.9.9,0,0,0,0 0 ¢

xxxx0000 4619f54413545f84977549d01efcf664ccdclb

Signed hash

Bleichenbacher attack on low
public exponents (e=3)
Cubic root of padding + Fermat

Infrastructure

Certificates are hard to check

theorem for hash

gotofail bug

IOS, Feb'14
=~GNUTLS, Mar'14

—Heartbleed,
OpenSSL, April'l4

Dd Solution’ -

gotofail.c + X

x

static 0SStatus

SSLVerifySignedServerKeyExchange
(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,
uint8 t *signature, UIntl6 signaturelen)

055tatus err;

if ((err = SSLHashSHA1l.update(&hashCtx, &serverRandom)) = @)

goto fail;

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != @)

goto fail;
goto failﬂ

if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)
goto fail;

The duplicate goto always branches

Implementation Bugs

many critical errors

to the end of the function with err = 0

The key is not bound to the
server signing-key certificate

140 %o

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);

return err;

b oAdb] 4

ClientHello

'
i ServerHellofy, ke, rg)
rgg =0 rog = 1

SMACK: State Machine AttaCKs /.

(abbreviased handshake)

- 3erverfF

Send Hello Send Hello Send Hello | . o
if (authenticate client™) | Clientccs
I
: : |
Eeceive C Receiwve A|C | Cast = 1 k
{ CE.‘L:F'.-:':-‘:_EIEC_L'EEL ."‘-'r lent rII'.'.SZ'.EQ
7 ,1 |
ServerBelloDone ﬁp,’:' 1 s ta

Eeceive A

Caar = 1

tiricatelcogmy)

X
Receive B|D

X
Feceive B Eeceive D
[u ClientCer
L N
:. ClientKeyExchange
L
| ~ Coae =1 &
Coffer = 1

| 4 | 4
Send Finished Send Finished ,
"{,, Cl nr:l:t_-z"_l_ 1 r icateVeriry

|'H

send Finished
[]
'.II'.I" CllentCcs

Implementation Bugs
What gets really implemented?

Application
HTTPS clients & servers

Triple Handshakes and Cookie Cutters:
Breaking and Fixing Authentication over TLS

Karthikeyan Bhargavan™, Antoine Delignat-Lavaud®, Cédric Fournet!, Alfredo Pironti* and Pierre-Yves Strub?
*INRIA Paris-Rocquencourt "Microsoft Research TIMDEA Software Institute

Abstract—TLS was designed as a transparent channel abstrac-
tion to allow developers with no cryptographic expertise to protect
their application against attackers that may control some clients,
some servers, and may have the capability to tamper with network
connections. However, the security guarantees of TLS fall short
of those of a secure channel, leading to a variety of attacks.

We show how some widespread false beliefs about these guar-
antees can be exploited to attack popular applications and defeat
several standard authentication methods that rely too naively on
TLS. We present new client impersonation attacks against TLS
renegotiations, wireless networks, challenge-response protocols,
and channel-bound cookies. Our attacks exploit combinations of
RSA and Diffie-Hellman key exchange, session resumption, and
renegotiation to bypass many recent countermeasures. We also
demonstrate new ways to exploit known weaknesses of HTTP
over TLS. We investigate the root causes for these attacks and
propose new countermeasures. At the protocol level, we design
and implement two new TLS extensions that strengthen the
authentication guarantees of the handshake. At the application
level, we develop an exemplary HTTPS client library that
implements several mitigations, on top of a previously verified
TLS implementation, and verify that their composition provides
strong, simple application security.

sessions, validating certificates, etc. Meanwhile, TLS appli-
cations continue to rely on URLs, passwords, and cookies;
they mix secure and insecure transports; and they often ignore
lower-level signals such as handshake completion, session
resumption, and truncated connections.

Many persistent problems can be blamed on a mismatch
between the authentication guarantees expected by the appli-
cation and those actually provided by TLS. To illustrate our
point, we list below a few myths about those guarantees, which
we debunk in this paper. Once a connection is established:

1) the principal at the other end cannot change;
2) the master secret is shared only between the two peers,
so it can be used to derive fresh application-level keys:
3) the tls-unique channel binding [6] uniquely identi-
fies the connection;
4) the connection authenticates the whole data stream, so it
is safe to start processing application data as it arrives.
The first is widely believed to be ensured by the TLS renego-
tiation extension [49]. The second and third are used for man-

in-the-middle protections in tunneled protocols like PEAP and
some authentication modes in SASL and GSS-API. The fourth

New

our

attacks
d while

:

IEEE Security & Privacy 2014

uaying
HTTPS

. Many web services rely
Cookie Cutter Attack Many web services
authenticate their users

HTTP/1.1 302 Redirect The secure cookie attribute
: tells the client browser that

Locatlon: https://x. C?m/P the cookie is HTTPS-only

Set-Cookie: SID=[Sess1onTbken]F secure

Content-Length: @ Many browsers silently

Protected by TLS process truncated
HTTP (e.g. images)

After truncation,

the authentication token

Android 4.2.2

Chrome 27 YES YES YES

Chrome 28 NO NO YES

Firefox 24 NO YES YES

Safari Mobile 7.0.2 YES YES YES o .

Opera Mini 7.5 YES YES YES Appllcatlon

Opera Classic 12.1 YES YES YES HTTPS Cllents & servers

Internet Explorer 10 NO YES YES

SPDY Connection Pooling Attack
T e N e O

https://w.com/y
Server1 Server 1
/_\ w.com w.com
i.w.com i.w.com
J
Browser Browser

Server 2 \/ Server 2
K https://fb.com/t [fb.com / k https://fb.com/t [fb.com /

J

Application
HTTPS clients & servers

SPDY Connection Pooling Attack
= N e O

) [SSL Error % .I\k - Servar il
€« C' [b#ps/localhost o =
w.com
i.w.com
SPDY <

The site's security certificate is not trusted!

You attempted to reach localhost, but the server presented a certificate issued by an entity

Server 2
that is not trusted by your computer's operating system. This may mean that the server has

\

\ generated its own security credentials, which Chrome cannot rely on for identity information,

: . - m/t fb.com
or an attacker may be trying to intercept your communications.)

You should not proceed, especially if yvou have never seen this warning before for this site.

| Proceed anyway | | Back to safety |

» Help me understand

Application
HTTPS clients & servers

SPDY Connection Pooling Attack

https://i.w.com/x https://i.w.com/x
/\ https://w.com/y
httos://w.com/v | |
W

~

AR - Server 1
€« C (% b#rs//localhost = ‘
B} https://accounts.google.c k L L w.com)
L C' [b#ps//accounts.google.com A —
Server 2
N This should be impossible because of [ben]
certificate pinning in Chrome
Application

HTTPS clients & servers

1A, DH,...)

ClientBallolcr, | RS,

s

CliantHallo(eor, | M 1]

ZarvarBallolsr, sid, 54 ENC_ALG)

ServerCartificatalcerig, pkg)

CliemtFinished{verifydat

SarvarCartificate|cert,, pf,)
Serverfallolone
CliantEeyExchangalrsapk , , pms))
CliantKayExchange(r mis |
CliantCCE
CliantFinished{verifrdatalms, log))

ServarCCE

ZarverFinished|verifydata(ms, logq))

ServarFinished! v

Cache new semion:
sid, s, anon
oz, RS A, ERC_ALG

[

Koows:
sid, ms, or, 57

Cnche new session:
sid, s, anon — cerig
o, sr, RS A ENC_ALG

Has session:
id, ma, anon — cert g,

er, ar, KEX_ALG, ENC_ALG

ClientHallo(er’, sid)

andshake Attack

Attncker

Hins scemina:
aid, ma anom i,
or, gr KEE_ALG ENC ALG

Hns soms
aid, ma, anon — eertg,

er, gr, KEX_ALGC, ENC_ALG

gid, ma, o', ar', cod, svd

Anows:
g, ThE, &L AT

Has session:
gid, ms, anon — ceri g,

er, ar, KEX_ALG, ENCALG

Sarvariicl lo|ar’, sid)

SarvarCCE

SarvarFinished| cod

verifydata| ma, log;)

CliemtOCE

vesifydata| ma, lagy)

CliemtFinishaod| sed

Knows:
sid, ms, o' o’

."\-:-w OO

wid, s, e,

Applata’

SarvarBallofsr”, mad’, KEX_ALG' ENC_ALS' evd, suvd)

ClisotHellofer", [KEX_ALDS|, [ERCALG

E

ServerCercificace{ser

BarverkayExchanga(si

CarcificaccBaquant

EarvarBallobong

CllaneCartificataloerie, phe)

ClienzHayExrchkangal kere)

Carcif lcazeWerifyisignisk-, fog, joorte)
ClieoclitE

CliemcFindshed|verifpdatama’, bagy)]

EarvarOCE

ServerFicisbad{verifydatalms’,

W SESI

gid, s, forto — oot
o ' KEX ALS, ENC_ALC

AppDatay

Apphacay

ntH dntn strosmn:

1 + Applatal

Accopts
Applac

AppDazad

Protocol Logic
Bad compositions of protocol features

*

. I T
Triple Handshake Attack Chronk s

a server-in-the-middle, using 3 related handshakes faore SChanne
Safari & Secure
e Apple mail Transport
This is a malicious website! . Secure
By gy e i, we e et i v d e s s i s Apple Mail Transport
CURL OpenSSL
CURL GnuTLS
Wget OpenSSL
NodelS HTTPS OpenSSL
S opmss
ﬁtptapcglfent JSSE L7
SVN / Nleon OnenSSl

Protocol Logic
Bad compositions of protocol features

JIL / CUIN\L JIIU 1 Lo

Infrastructure
certificate management (PKI)

Protocol Logic TLS Cryptography
e.g. ambiguous messages DESIGN e.g. not enough randomness
* cause clients and server write applet to realize
to negotiate weak sessions adaptive attack (BEAST)
Implementation Bugs Weak Algorithms
many critical errors MDS5, PKCS1, RC4, ...
Application

HTTPS clients & servers

To get application security,
we must capture all these aspects
within the same model

« We build a verified reference implementation
« We use automated proof tools to scale up

A cryptographically verifieo
reference implementation of TLS

IEEE Security & Privacy 2013

https.//www.mITLS.org

We develop and verify a reference implementation for SSL 3.0—TLS 1.2

1. Standard compliance: we closely follow the RFCs
 concrete message formats

« support for multiple ciphersuites, sessions and connections,
re-handshakes and resumptions, alerts, message fragmentation,...

« interop with other implementations such as web browsers and servers

2. Verified security: we structure our code to enable its
modular verification, from its main API down to
concrete assumptions on its base cryptography (e.g. RSA)

probabilistic computational security theorems
for a 7000-line functionality (automation required)

3. Experimental platform: for testing corner cases,
trying out attacks, studying application-level protocals,
analysing new extensions and patches, ...

https://www.mitls.org/

Ciphersuites &
Crypto Agility

TLS negotiates its use of cryptography

Not all algorithms are equal!

Cautionary tale; ECDHE considered safest,
open to aftack for 2 years due to bug
in elliptic curve fast multiplication

Clients and servers should get security
for the ciphersuite they prefer,
not the weakest they support

Circular dependency: TLS relies on
the ciphersuites being negotiated

We verity TLS generically, |
for multiple ciphersuites ‘& algorithms
This requires new cryptographic models

TLS NULL WITH NULL NULL
TLS RSA WITH NULL MD5

TLS RSA WITH NULL SHA

TLS RSA WITH NULL SHA256

TLS RSA WITH RC4 128 MDS

TLS RSA WITH RC4 128 SHA

TLS RSA WITH 3DES EDE CBC SHA

TLS RSA WITH AES 128 CBC SHA

TLS RSA WITH AES 256 CBC SHA

TLS RSA WITH AES 128 CBC SHA256
TLS RSA WITH AES 256 CBC SHA256
TLS DH DSS WITH 3DES EDE CBC SHA
TLS DH RSA WITH 3DES EDE CBC SHAE
TLS DHE DSS WITH 3DES EDE CBC SHA
TLS DHE RSA WITH 3DES EDE CBC SHA
TLS DH anon WITH RC4 128 MD5

TLS DH anon WITH 3DES EDE CBC SHA
TLS DH _DSS WITH AES 128 CBC_SHA
TLS DH RSA WITH AES 12§ CBC SHA
TLS DHE DSS WITH AES 128 CBC SHA
TLS_DHE RSA WITH AES 128 CBC SHA
TLS DH anon WITH AES 128 CBC SHA
TLS DH DSS WITH AES 256 CBC SHA
TLS DH RSE WITH AES 256 CBC SHA
TLS DHE DSS WITH AES 256 CBC SHA
TLS DHE RSA WITH AES 256 CBC SHA
TLS DH anon WITH AES 256 CBC SHA
TLS DH DSS WITH AES 128 CBC_ SHA256
TLS DH RSE WITH AES 128 CBC_ SHA256
TLS DHE DSS WITH AES 128 CBC SHR256
TLS DHE RSA WITH AES 128 CBC SHA256

TLS DH anon WITH AES 128 CBC SHRZ56

TLS DH DSS WITH RES 256 CBC SHA256
TLS DH RSE WITH AES 256 CBC_ SHA256
TLS DHE DSS WITH AES 256 CBC SHR256
TLS DHE RSA WITH AES 256 CBC SHA256

TLS DH anon WITH AES 256 CBC SHR256

Verification Method: Type-Based Cryptography

. . message symmetric symmetric
C I’yptOg [a p h IC a |g O ch MSs authentication encryption encryption
(SHAI) (AES-CBCQ) (RC4)
types express cryptographic assumptions INT-CMA IND-CPA
‘

: : encrypt fragment-MAC-
CryptOgraphlc constructions then-MAC encode-then-encrypt

types express security guarantees authenticated encryption

TLS 1.2

Security protocols
Secure RPC

types express attacker models secure channel

attack application code

Applications & Adversaries some __| some

