
Type-based Verification at Scale
miTLS: a verified reference implementation of TLS

Antoine Delignat-Lavaud
with
Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, Pierre-Yves Strub, Santiago Zanella Beguelin

https://www.miTLS.org

http://software.imdea.org/
http://software.imdea.org/
http://www.inria.fr/
http://www.inria.fr/
https://www.mitls.org/

SChannel, OpenSSL, NSS, GnuTLS, JSSE, PolarSSL
many patches every year; Snowden allegations

Well-understood, detailed specs
many security theorems…
mostly for small simplified models of TLS

Protocol Logic

e.g. ambiguous messages

• cause clients and server

to negotiate weak sessions

Cryptography

e.g. not enough randomness

• write applet to realize

adaptive attack (BEAST)

Weak Algorithms

MD5, PKCS1, RC4, …
Implementation Bugs

many critical errors

TLS

DESIGN

Infrastructure

certificate management (PKI)

Application

HTTPS clients & servers

Binary encoding

standard

Ancient (1984)

<Tag, Length, Value>

Distinguished rules

(DER): unique

serialization

Infrastructure

Certificates are hard to check

01fff

ff

ff

fffffffffffffffffffffffffffffffffffffff000100307B300706052b0e03021a

04dc0146f9f544f3545f84977549d01efcf664cc4c1b603

PKCS#1 Padding

Signed hash

Sign: S = (padding||oid||h)^d mod N

Verify: S^e mod N (e.g. e=3)

Infrastructure

Certificates are hard to check

Infrastructure

Certificates are hard to check

CA Certificate

000100307B300706052b0e03021a04dcxxxxxxxxxxxxxxxxxxxxxx

xx

xx

xx

xxxx0000000146f9f544f3545f84977549d01efcf664cc4c1b603

PKCS#1 Padding

+ hash algorithm OID

Injection of junk bytes

Ignored by ASN.1 parser

Signed hash

Bleichenbacher attack on low

public exponents (e=3)

Cubic root of padding + Fermat

theorem for hash

The duplicate goto always branches

to the end of the function with err = 0

The key is not bound to the

server signing-key certificate

Implementation Bugs

many critical errors

then GnuTLS, Mar’14

then Heartbleed,
OpenSSL, April’14

Implementation Bugs

What gets really implemented?

Application

HTTPS clients & servers

IEEE Security & Privacy 2014

HTTP/1.1 302 Redirect
Location: https://x.com/P
Set-Cookie: SID=[SessionToken]; secure
Content-Length: 0

Many web services rely

on session tokens to

authenticate their users

The secure cookie attribute

tells the client browser that

the cookie is HTTPS-only

Many browsers silently

process truncated

HTTP (e.g. images)

After truncation,

any fake HTTP query leaks

the authentication token

Browser vulnerable

to truncations?
Header Body (Length) Body (Chunked)

Android 4.2.2 YES YES YES

Chrome 27 YES YES YES

Chrome 28 NO NO YES

Firefox 24 NO YES YES

Safari Mobile 7.0.2 YES YES YES

Opera Mini 7.5 YES YES YES

Opera Classic 12.1 YES YES YES

Internet Explorer 10 NO YES YES

Application

HTTPS clients & servers

Browser

w.com
i.w.com

Server 1

fb.com

Server 2

https://fb.com/t

https://i.w.com/x

https://w.com/y

HTTP Browser

w.com
i.w.com

Server 1

fb.com

Server 2

https://fb.com/t

https://i.w.com/x
https://w.com/y

SPDY

Application

HTTPS clients & servers

Browser

w.com
i.w.com

Server 1

fb.com

Server 2

https://fb.com/t

https://i.w.com/x

https://w.com/y

HTTP Browser

w.com
i.w.com

Server 1

fb.com

Server 2

https://fb.com/t

https://i.w.com/x
https://w.com/y

SPDY

Application

HTTPS clients & servers

Browser

w.com
i.w.com

Server 1

fb.com

Server 2

https://fb.com/t

https://i.w.com/x

https://w.com/y

HTTP Browser

w.com
i.w.com

Server 1

fb.com

Server 2

https://fb.com/t

https://i.w.com/x
https://w.com/y

SPDY

Application

HTTPS clients & servers

Protocol Logic

Bad compositions of protocol features

Client TLS library

Chromium

Opera 15+
NSS

Internet

Explorer
SChannel

Safari &

Apple mail

Secure

Transport

Apple Mail
Secure

Transport

CURL OpenSSL

CURL GnuTLS

Wget OpenSSL

NodeJS HTTPS OpenSSL

PHP SSL

Transport
OpenSSL

Apache

HttpClient
JSSE 1.7

SVN / Neon OpenSSL

SVN / Neon OpenSSL

Cadaver/Neon OpenSSL

Git / CURL GnuTLS

Protocol Logic

Bad compositions of protocol features

Protocol Logic

e.g. ambiguous messages

• cause clients and server

to negotiate weak sessions

Cryptography

e.g. not enough randomness

• write applet to realize

adaptive attack (BEAST)

Weak Algorithms

MD5, PKCS1, RC4, …
Implementation Bugs

many critical errors

TLS

DESIGN

Infrastructure

certificate management (PKI)

Application

HTTPS clients & servers

IEEE Security & Privacy 2013

https://www.miTLS.org

https://www.mitls.org/

TLS negotiates its use of cryptography

Not all algorithms are equal!
Cautionary tale: ECDHE considered safest,
open to attack for 2 years due to bug
in elliptic curve fast multiplication

Clients and servers should get security
for the ciphersuite they prefer,
not the weakest they support

Circular dependency: TLS relies on
the ciphersuites being negotiated

We verify TLS generically,
for multiple ciphersuites & algorithms

This requires new cryptographic models

symmetric

encryption

(AES-CBC)
Cryptographic algorithms

symmetric

encryption

(RC4)

Secure RPC

some

application code

TLS 1.2

Applications & Adversaries

Security protocols

Cryptographic constructions
encrypt

then-MAC
fragment-MAC-

encode-then-encrypt

some

attack
some

attack

some

attack

message

authentication

(SHA1)

INT-CMA IND-CPA

authenticated encryption

secure channel

