
Logical Foundations of Secure Resource Management
in Protocol Implementations

Matteo Maffei1

joint work with Michele Bugliesi2, Fabienne Eigner1 and Stefano Calzavara2

1CISPA, Saarland University

2Università Ca’ Foscari Venezia

26 November 2014, Joint EasyCrypt-F*-CryptoVerif School, Paris

POST’13, best EATCS paper award at ETAPS’13.

Outline

Why? (Beyond FOL refinements)

What? (Affine logic for security protocols)

How? (Proof techniques)

2 / 76

Refinement types for secure implementations

Verified implementations

narrow the gap between formal model and implementation

combine type-checking with general-purpose theorem proving

efficient and modular verification

Methodology

annotate the code with logical formulas
I assumptions: formulas which are assumed to hold
I assertions: formulas which must be entailed by the assumptions

type-check the code against appropriate refinement types

well-typed programs are robustly safe: assertions are always entailed
by the introduced assumptions, even in presence of an opponent

3 / 76

Refinement types for secure implementations

Verified implementations

narrow the gap between formal model and implementation

combine type-checking with general-purpose theorem proving

efficient and modular verification

Methodology

annotate the code with logical formulas
I assumptions: formulas which are assumed to hold
I assertions: formulas which must be entailed by the assumptions

type-check the code against appropriate refinement types

well-typed programs are robustly safe: assertions are always entailed
by the introduced assumptions, even in presence of an opponent

4 / 76

Refinement types for secure implementations

Verified implementations

narrow the gap between formal model and implementation

combine type-checking with general-purpose theorem proving

efficient and modular verification

Methodology

annotate the code with logical formulas
I assumptions: formulas which are assumed to hold
I assertions: formulas which must be entailed by the assumptions

type-check the code against appropriate refinement types

well-typed programs are robustly safe: assertions are always entailed
by the introduced assumptions, even in presence of an opponent

5 / 76

Refinement types for secure implementations

Verified implementations

narrow the gap between formal model and implementation

combine type-checking with general-purpose theorem proving

efficient and modular verification

Methodology

annotate the code with logical formulas
I assumptions: formulas which are assumed to hold
I assertions: formulas which must be entailed by the assumptions

type-check the code against appropriate refinement types

well-typed programs are robustly safe: assertions are always entailed
by the introduced assumptions, even in presence of an opponent

6 / 76

A glance at refinement typing

C S

assume Good(msg)

sign(msg ,sk(C)) //

assert Good(msg)

Refinement typing

sk(C) : SigKey({x : string | Good(x)})

C must prove that Good(msg) holds true upon signing

S can rely on Good(msg) being true upon verification

7 / 76

A glance at refinement typing

C S

assume Good(msg)

sign(msg :{x :string | Good(x)},sk(C)) //

assert Good(msg)

Refinement typing

sk(C) : SigKey({x : string | Good(x)})

C must prove that Good(msg) holds true upon signing

S can rely on Good(msg) being true upon verification

8 / 76

A glance at refinement typing

C S

assume Good(msg)

sign(msg :{x :string | Good(x)},sk(C)) //

assert Good(msg)

Refinement typing

sk(C) : SigKey({x : string | Good(x)})

C must prove that Good(msg) holds true upon signing

S can rely on Good(msg) being true upon verification

9 / 76

Replays

C O S

assume Good(msg)

sign(msg ,sk(C)) //
sign(msg ,sk(C)) //

assert Good(msg)

sign(msg ,sk(C)) //

assert Good(msg)

This run is safe...

In FOL: Good(msg) ` Good(msg) ∧ Good(msg)

...but sometimes it should not!

What if Good(msg) expresses a bank transaction?

10 / 76

Outline

Why? (Beyond FOL refinements)

What? (Affine refinements for security protocols)

How? (Proof techniques)

11 / 76

Resource-aware properties

Counting

Some properties require to count the number of times a certain resource is
used (or an action is performed)

Injective agreement or strong authentication: every end-event is
preceded by a distinct begin-event

No double-vote: cannot vote more than once

Affine (or resource-aware) logic

Such properties can be naturally expressed in affine logic (no contraction)

affine hypotheses A can be used at most once

exponential hypotheses !A can be used arbitrarily often

For instance, Good(msg) 6` Good(msg)⊗ Good(msg)
(⊗ denotes conjunction in affine logic)

How can we type-check cryptographic protocols that achieve
resource-aware properties?

12 / 76

Resource-aware properties

Counting

Some properties require to count the number of times a certain resource is
used (or an action is performed)

Injective agreement or strong authentication: every end-event is
preceded by a distinct begin-event

No double-vote: cannot vote more than once

Affine (or resource-aware) logic

Such properties can be naturally expressed in affine logic (no contraction)

affine hypotheses A can be used at most once

exponential hypotheses !A can be used arbitrarily often

For instance, Good(msg) 6` Good(msg)⊗ Good(msg)
(⊗ denotes conjunction in affine logic)

How can we type-check cryptographic protocols that achieve
resource-aware properties?

13 / 76

Resource-aware properties

Counting

Some properties require to count the number of times a certain resource is
used (or an action is performed)

Injective agreement or strong authentication: every end-event is
preceded by a distinct begin-event

No double-vote: cannot vote more than once

Affine (or resource-aware) logic

Such properties can be naturally expressed in affine logic (no contraction)

affine hypotheses A can be used at most once

exponential hypotheses !A can be used arbitrarily often

For instance, Good(msg) 6` Good(msg)⊗ Good(msg)
(⊗ denotes conjunction in affine logic)

How can we type-check cryptographic protocols that achieve
resource-aware properties?

14 / 76

Resource-aware refinement typing

C S

assume Nonce(n)

noo

assume Good(msg)

Prove: !(Nonce(n) (Good(msg))

sign((n,msg),sk(C)) //

Rely on: !(Nonce(n) (Good(msg))

assert Good(msg)

Guarded refinement types

sk(C) : SigKey(x : int, {y : string | !(Nonce(x) (Good(y))})
Type-checking the assertion

Nonce(n), !(Nonce(n) (Good(msg)) ` Good(msg)

Preventing duplication

Nonce(n), !(Nonce(n) (Good(msg)) 0 Good(msg)⊗ Good(msg)

15 / 76

Resource-aware refinement typing

C S

assume Nonce(n)

noo

assume Good(msg)

Prove: !(Nonce(n) (Good(msg))

sign((n,msg),sk(C)) //

Rely on: !(Nonce(n) (Good(msg))

assert Good(msg)

Guarded refinement types

sk(C) : SigKey(x : int, {y : string | !(Nonce(x) (Good(y))})

Type-checking the assertion

Nonce(n), !(Nonce(n) (Good(msg)) ` Good(msg)

Preventing duplication

Nonce(n), !(Nonce(n) (Good(msg)) 0 Good(msg)⊗ Good(msg)

16 / 76

Resource-aware refinement typing

C S

assume Nonce(n)

noo

assume Good(msg)

Prove: !(Nonce(n) (Good(msg))

sign((n,msg),sk(C)) //

Rely on: !(Nonce(n) (Good(msg))

assert Good(msg)

Guarded refinement types

sk(C) : SigKey(x : int, {y : string | !(Nonce(x) (Good(y))})

Type-checking the assertion

Nonce(n), !(Nonce(n) (Good(msg)) ` Good(msg)

Preventing duplication

Nonce(n), !(Nonce(n) (Good(msg)) 0 Good(msg)⊗ Good(msg)

17 / 76

Resource-aware refinement typing

C S

assume Nonce(n)

noo

assume Good(msg)

Prove: !(Nonce(n) (Good(msg))

sign((n,msg),sk(C)) //

Rely on: !(Nonce(n) (Good(msg))

assert Good(msg)

Guarded refinement types

sk(C) : SigKey(x : int, {y : string | !(Nonce(x) (Good(y))})

Type-checking the assertion

Nonce(n), !(Nonce(n) (Good(msg)) ` Good(msg)

Preventing duplication

Nonce(n), !(Nonce(n) (Good(msg)) 0 Good(msg)⊗ Good(msg)

18 / 76

Resource-aware refinement typing

C S

assume Nonce(n)

noo

assume Good(msg)

Prove: !(Nonce(n) (Good(msg))

sign((n,msg),sk(C)) //

Rely on: !(Nonce(n) (Good(msg))

assert Good(msg)

Guarded refinement types

sk(C) : SigKey(x : int, {y : string | !(Nonce(x) (Good(y))})
Type-checking the assertion

Nonce(n), !(Nonce(n) (Good(msg)) ` Good(msg)

Preventing duplication

Nonce(n), !(Nonce(n) (Good(msg)) 0 Good(msg)⊗ Good(msg)

19 / 76

Static enforcement of resource-aware policies

Contributions

a theory of exponential serialization

a type system for enforcing affine logic policies on application code

The type system

the theory is developed for RCF (a core calculus of F#)

the design leverages the theory of exponential serialization
I no affine types: we can encode them
I affine formulas: clearly separated from the typing information
I this simplifies both the theory and the implementation

well-typed programs are robustly safe
I the multiplicative conjunction of the assertions is entailed by the

introduced assumptions
I even in presence of an arbitrary opponent

20 / 76

Static enforcement of resource-aware policies

Contributions

a theory of exponential serialization

a type system for enforcing affine logic policies on application code

The type system

the theory is developed for RCF (a core calculus of F#)

the design leverages the theory of exponential serialization
I no affine types: we can encode them
I affine formulas: clearly separated from the typing information
I this simplifies both the theory and the implementation

well-typed programs are robustly safe
I the multiplicative conjunction of the assertions is entailed by the

introduced assumptions
I even in presence of an arbitrary opponent

21 / 76

Static enforcement of resource-aware policies

Contributions

a theory of exponential serialization

a type system for enforcing affine logic policies on application code

The type system

the theory is developed for RCF (a core calculus of F#)

the design leverages the theory of exponential serialization
I no affine types: we can encode them
I affine formulas: clearly separated from the typing information

I this simplifies both the theory and the implementation

well-typed programs are robustly safe
I the multiplicative conjunction of the assertions is entailed by the

introduced assumptions
I even in presence of an arbitrary opponent

22 / 76

Static enforcement of resource-aware policies

Contributions

a theory of exponential serialization

a type system for enforcing affine logic policies on application code

The type system

the theory is developed for RCF (a core calculus of F#)

the design leverages the theory of exponential serialization
I no affine types: we can encode them
I affine formulas: clearly separated from the typing information
I this simplifies both the theory and the implementation

well-typed programs are robustly safe
I the multiplicative conjunction of the assertions is entailed by the

introduced assumptions
I even in presence of an arbitrary opponent

23 / 76

Static enforcement of resource-aware policies

Contributions

a theory of exponential serialization

a type system for enforcing affine logic policies on application code

The type system

the theory is developed for RCF (a core calculus of F#)

the design leverages the theory of exponential serialization
I no affine types: we can encode them
I affine formulas: clearly separated from the typing information
I this simplifies both the theory and the implementation

well-typed programs are robustly safe
I the multiplicative conjunction of the assertions is entailed by the

introduced assumptions

I even in presence of an arbitrary opponent

24 / 76

Static enforcement of resource-aware policies

Contributions

a theory of exponential serialization

a type system for enforcing affine logic policies on application code

The type system

the theory is developed for RCF (a core calculus of F#)

the design leverages the theory of exponential serialization
I no affine types: we can encode them
I affine formulas: clearly separated from the typing information
I this simplifies both the theory and the implementation

well-typed programs are robustly safe
I the multiplicative conjunction of the assertions is entailed by the

introduced assumptions
I even in presence of an arbitrary opponent

25 / 76

Outline

Why? (Beyond FOL refinements)

What? (Affine refinements for security protocols)

How? (Proof techniques)

26 / 76

Example: a streaming service

C S
noo

assume Paid(C , $1)

{C ,movie,n}sk(C)
//

assert Watch(C ,movie)

Authorization policy

P = !∀x , y .(Paid(x , $1) (Watch(x , y))

27 / 76

Example: a streaming service

C S
noo

assume Paid(C , $1)
{C ,movie,n}sk(C)

//

assert Watch(C ,movie)

Authorization policy

P = !∀x , y .(Paid(x , $1) (Watch(x , y))

28 / 76

Implementing the streaming service

C S
noo

assume Paid(C , $1)

{C ,movie,n}sk(C)
//

assert Watch(C ,movie)

let client C addC addS m sk =

let xn = recv addC in assume Paid(C,$1);

let msg = sign (C,m,xn) sk in send addS msg

val mkNonce: unit -> {x: bytes | Nonce(x)}

let serv S addC addS vk =

let n = mkNonce () in send addC n;

let msg = recv addS in

let (xC, xm, xn) = verify msg vk in

if (xn = n) then

assert Watch(xC,xm)

29 / 76

Implementing the streaming service

C S
noo

assume Paid(C , $1)

{C ,movie,n}sk(C)
//

assert Watch(C ,movie)

let client C addC addS m sk =

let xn = recv addC in assume Paid(C,$1);

let msg = sign (C,m,xn) sk in send addS msg

val mkNonce: unit -> {x: bytes | Nonce(x)}

let serv S addC addS vk =

let n = mkNonce () in send addC n;

let msg = recv addS in

let (xC, xm, xn) = verify msg vk in

if (xn = n) then

assert Watch(xC,xm)

30 / 76

Type-checking the server

Verification key type

vk : VerKey(x : Tc , y : Tm, {z : Tn | !(Nonce(z) (Paid(x , $1))})

val mkNonce: unit -> {x: bytes | Nonce(x)}

let serv S addC addS vk =

let n = mkNonce () in send addC n;

// Nonce(n) holds true

let msg = recv addS in

let (xC, xm, xn) = verify msg vk in

// !(Nonce(xn) --o Paid(xC,$1)) holds true

if (xn = n) then

// !(xn = n) holds true

assert Watch(xC,xm)

Type-checking the assertion

Recall P = !∀x , y .(Paid(x , $1) (Watch(x , y)), we have:

P,Nonce(n), !(xn = n), !(Nonce(xn) (Paid(xC , $1)) `Watch(xC , xm)

31 / 76

Type-checking the server

Verification key type

vk : VerKey(x : Tc , y : Tm, {z : Tn | !(Nonce(z) (Paid(x , $1))})

val mkNonce: unit -> {x: bytes | Nonce(x)}

let serv S addC addS vk =

let n = mkNonce () in send addC n;

// Nonce(n) holds true

let msg = recv addS in

let (xC, xm, xn) = verify msg vk in

// !(Nonce(xn) --o Paid(xC,$1)) holds true

if (xn = n) then

// !(xn = n) holds true

assert Watch(xC,xm)

Type-checking the assertion

Recall P = !∀x , y .(Paid(x , $1) (Watch(x , y)), we have:

P,Nonce(n), !(xn = n), !(Nonce(xn) (Paid(xC , $1)) `Watch(xC , xm)

32 / 76

Type-checking the server

Verification key type

vk : VerKey(x : Tc , y : Tm, {z : Tn | !(Nonce(z) (Paid(x , $1))})

val mkNonce: unit -> {x: bytes | Nonce(x)}

let serv S addC addS vk =

let n = mkNonce () in send addC n;

// Nonce(n) holds true

let msg = recv addS in

let (xC, xm, xn) = verify msg vk in

// !(Nonce(xn) --o Paid(xC,$1)) holds true

if (xn = n) then

// !(xn = n) holds true

assert Watch(xC,xm)

Type-checking the assertion

Recall P = !∀x , y .(Paid(x , $1) (Watch(x , y)), we have:

P,Nonce(n), !(xn = n), !(Nonce(xn) (Paid(xC , $1)) `Watch(xC , xm)

33 / 76

Type-checking the client

Signing key type

sk : SigKey(x : Tc , y : Tm, {z : Tn | !(Nonce(z) (Paid(x , $1))})

let client C addC addS m sk =

let xn = recv addC in assume Paid(C,$1);

// Paid(C,$1) holds true

let msg = sign (C,m,xn) sk in send addS msg

Type-checking the signature

We must prove: Paid(C , $1) ` !(Nonce(xn) (Paid(C , $1))

... but this is not true in affine logic!

This implies that the signing operation is not well-typed!

34 / 76

Type-checking the client

Signing key type

sk : SigKey(x : Tc , y : Tm, {z : Tn | !(Nonce(z) (Paid(x , $1))})

let client C addC addS m sk =

let xn = recv addC in assume Paid(C,$1);

// Paid(C,$1) holds true

let msg = sign (C,m,xn) sk in send addS msg

Type-checking the signature

We must prove: Paid(C , $1) ` !(Nonce(xn) (Paid(C , $1))

... but this is not true in affine logic!

This implies that the signing operation is not well-typed!

35 / 76

Type-checking the client

Signing key type

sk : SigKey(x : Tc , y : Tm, {z : Tn | !(Nonce(z) (Paid(x , $1))})

let client C addC addS m sk =

let xn = recv addC in assume Paid(C,$1);

// Paid(C,$1) holds true

let msg = sign (C,m,xn) sk in send addS msg

Type-checking the signature

We must prove: Paid(C , $1) ` !(Nonce(xn) (Paid(C , $1))

... but this is not true in affine logic!

This implies that the signing operation is not well-typed!

36 / 76

Type-checking the client

Signing key type

sk : SigKey(x : Tc , y : Tm, {z : Tn | !(Nonce(z) (Paid(x , $1))})

let client C addC addS m sk =

let xn = recv addC in assume Paid(C,$1);

// Paid(C,$1) holds true

let msg = sign (C,m,xn) sk in send addS msg

Type-checking the signature

We must prove: Paid(C , $1) ` !(Nonce(xn) (Paid(C , $1))

... but this is not true in affine logic!

This implies that the signing operation is not well-typed!

37 / 76

Type-checking the client

Signing key type

sk : SigKey(x : Tc , y : Tm, {z : Tn | !(Nonce(z) (Paid(x , $1))})

let client C addC addS m sk =

let xn = recv addC in assume Paid(C,$1);

// Paid(C,$1) holds true

let msg = sign (C,m,xn) sk in send addS msg

Type-checking the signature

We must prove: Paid(C , $1) ` !(Nonce(xn) (Paid(C , $1))

... but this is not true in affine logic!

This implies that the signing operation is not well-typed!

38 / 76

Exponential serialization (1/2)

Signing key type

sk : SigKey(x : Tc , y : Tm, {z : Tn | !(Nonce(z) (Paid(x , $1))})

let client C addC addS m sk =

let xn = recv addC in assume Paid(C,$1);

// Paid(C,$1) holds true

let msg = sign (C,m,xn) sk in send addS msg

Solution

Add an explicit serializer among the assumptions

S = !∀x , y .(Paid(x , $1) (!(Nonce(y) (Paid(x , $1)))

Notice that we have:

S,Paid(C , $1) ` !(Nonce(xn) (Paid(C , $1))

39 / 76

Exponential serialization (1/2)

Signing key type

sk : SigKey(x : Tc , y : Tm, {z : Tn | !(Nonce(z) (Paid(x , $1))})

let client C addC addS m sk =

let xn = recv addC in assume Paid(C,$1);

// Paid(C,$1) holds true

let msg = sign (C,m,xn) sk in send addS msg

Solution

Add an explicit serializer among the assumptions

S = !∀x , y .(Paid(x , $1) (!(Nonce(y) (Paid(x , $1)))

Notice that we have:

S,Paid(C , $1) ` !(Nonce(xn) (Paid(C , $1))

40 / 76

Exponential serialization (1/2)

Signing key type

sk : SigKey(x : Tc , y : Tm, {z : Tn | !(Nonce(z) (Paid(x , $1))})

let client C addC addS m sk =

let xn = recv addC in assume Paid(C,$1);

// Paid(C,$1) holds true

let msg = sign (C,m,xn) sk in send addS msg

Solution

Add an explicit serializer among the assumptions

S = !∀x , y .(Paid(x , $1) (!(Nonce(y) (Paid(x , $1)))

Notice that we have:

S,Paid(C , $1) ` !(Nonce(xn) (Paid(C , $1))

41 / 76

Exponential serialization (2/2)

Benefits

modularity: let affine logic handle resource management!

expressiveness: nonces, TIDs, timestamps, session keys, affine types

insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

S = !∀x , y .(Paid(x , $1) (!(Nonce(y) (Paid(x , $1)))

Paid(C , $1),Nonce(n),Nonce(n) 0 Paid(C , $1)⊗ Paid(C , $1)

Paid(C , $1),Nonce(n),Nonce(n),S ` Paid(C , $1)⊗ Paid(C , $1)

In the paper we identify sufficient syntactic conditions for soundness

42 / 76

Exponential serialization (2/2)

Benefits

modularity: let affine logic handle resource management!

expressiveness: nonces, TIDs, timestamps, session keys, affine types

insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

S = !∀x , y .(Paid(x , $1) (!(Nonce(y) (Paid(x , $1)))

Paid(C , $1),Nonce(n),Nonce(n) 0 Paid(C , $1)⊗ Paid(C , $1)

Paid(C , $1),Nonce(n),Nonce(n),S ` Paid(C , $1)⊗ Paid(C , $1)

In the paper we identify sufficient syntactic conditions for soundness

43 / 76

Exponential serialization (2/2)

Benefits

modularity: let affine logic handle resource management!

expressiveness: nonces, TIDs, timestamps, session keys, affine types

insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

S = !∀x , y .(Paid(x , $1) (!(Nonce(y) (Paid(x , $1)))

Paid(C , $1),Nonce(n),Nonce(n) 0 Paid(C , $1)⊗ Paid(C , $1)

Paid(C , $1),Nonce(n),Nonce(n),S ` Paid(C , $1)⊗ Paid(C , $1)

In the paper we identify sufficient syntactic conditions for soundness

44 / 76

Exponential serialization (2/2)

Benefits

modularity: let affine logic handle resource management!

expressiveness: nonces, TIDs, timestamps, session keys, affine types

insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

S = !∀x , y .(Paid(x , $1) (!(Nonce(y) (Paid(x , $1)))

Paid(C , $1),Nonce(n),Nonce(n) 0 Paid(C , $1)⊗ Paid(C , $1)

Paid(C , $1),Nonce(n),Nonce(n),S ` Paid(C , $1)⊗ Paid(C , $1)

In the paper we identify sufficient syntactic conditions for soundness

45 / 76

Exponential serialization (2/2)

Benefits

modularity: let affine logic handle resource management!

expressiveness: nonces, TIDs, timestamps, session keys, affine types

insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

S = !∀x , y .(Paid(x , $1) (!(Nonce(y) (Paid(x , $1)))

Paid(C , $1),Nonce(n),Nonce(n) 0 Paid(C , $1)⊗ Paid(C , $1)

Paid(C , $1),Nonce(n),Nonce(n),S ` Paid(C , $1)⊗ Paid(C , $1)

In the paper we identify sufficient syntactic conditions for soundness

46 / 76

Exponential serialization (2/2)

Benefits

modularity: let affine logic handle resource management!

expressiveness: nonces, TIDs, timestamps, session keys, affine types

insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

S = !∀x , y .(Paid(x , $1) (!(Nonce(y) (Paid(x , $1)))

Paid(C , $1),Nonce(n),Nonce(n) 0 Paid(C , $1)⊗ Paid(C , $1)

Paid(C , $1),Nonce(n),Nonce(n),S ` Paid(C , $1)⊗ Paid(C , $1)

In the paper we identify sufficient syntactic conditions for soundness

47 / 76

Overview of the type system

Typing environments

Type judgements of the form Γ; ∆ ` J
Γ is a list of type bindings

∆ is a multiset of affine formulas

Typing rules

General structure of a typing rule

Γ; ∆1 ` J1 . . . Γ; ∆n ` Jn ∆ ↪→ ∆1, . . . ,∆n

Γ; ∆ ` J

The rewriting ∆ ↪→ ∆′ allows for manipulating the logical context
according to the entailment relation (e.g., split conjunctions or duplicate
exponential resources)

48 / 76

Overview of the type system

Typing environments

Type judgements of the form Γ; ∆ ` J
Γ is a list of type bindings

∆ is a multiset of affine formulas

Typing rules

General structure of a typing rule

Γ; ∆1 ` J1 . . . Γ; ∆n ` Jn ∆ ↪→ ∆1, . . . ,∆n

Γ; ∆ ` J

The rewriting ∆ ↪→ ∆′ allows for manipulating the logical context
according to the entailment relation (e.g., split conjunctions or duplicate
exponential resources)

49 / 76

Example

Standard Refinement Typing

Val Refine
Γ; ∆ ` M : T Γ; ∆ ` F{M/x}

Γ; ∆ ` M : {x : T | F}

Affine Refinement Typing

We have to choose where to use affine resources:

Val Refine
Γ; ∆1 ` M : T Γ; ∆2 ` F{M/x} ∆ ↪→ ∆1,∆2

Γ; ∆ ` M : {x : T | F}

E.g., M : T ;A⊗ B ` M : {y : {x : T | A} | B} since A⊗ B ↪→ A,B

50 / 76

Example

Standard Refinement Typing

Val Refine
Γ; ∆ ` M : T Γ; ∆ ` F{M/x}

Γ; ∆ ` M : {x : T | F}

Affine Refinement Typing

We have to choose where to use affine resources:

Val Refine
Γ; ∆1 ` M : T Γ; ∆2 ` F{M/x} ∆ ↪→ ∆1,∆2

Γ; ∆ ` M : {x : T | F}

E.g., M : T ;A⊗ B ` M : {y : {x : T | A} | B} since A⊗ B ↪→ A,B

51 / 76

Algorithmic type-checking

Environment rewriting is highly non-deterministic and this hinders the
implementation of a type-checker:

the type-checker should incorporate logical entailment...

... and distribute formulas among subderivations

Algorithmic formulation

Γ; ∆ ` J replaced by Γ `alg J ;F

we remove the non-determinism associated to ∆

deterministic, syntax-directed construction of a proof obligation F

F is later discharged by an external theorem prover

if both steps succeed, the code is well-typed

algorithmic type-checking is sound and complete

52 / 76

Algorithmic type-checking

Environment rewriting is highly non-deterministic and this hinders the
implementation of a type-checker:

the type-checker should incorporate logical entailment...

... and distribute formulas among subderivations

Algorithmic formulation

Γ; ∆ ` J replaced by Γ `alg J ;F

we remove the non-determinism associated to ∆

deterministic, syntax-directed construction of a proof obligation F

F is later discharged by an external theorem prover

if both steps succeed, the code is well-typed

algorithmic type-checking is sound and complete

53 / 76

Algorithmic type-checking

Environment rewriting is highly non-deterministic and this hinders the
implementation of a type-checker:

the type-checker should incorporate logical entailment...

... and distribute formulas among subderivations

Algorithmic formulation

Γ; ∆ ` J replaced by Γ `alg J ;F

we remove the non-determinism associated to ∆

deterministic, syntax-directed construction of a proof obligation F

F is later discharged by an external theorem prover

if both steps succeed, the code is well-typed

algorithmic type-checking is sound and complete

54 / 76

Algorithmic type-checking

Environment rewriting is highly non-deterministic and this hinders the
implementation of a type-checker:

the type-checker should incorporate logical entailment...

... and distribute formulas among subderivations

Algorithmic formulation

Γ; ∆ ` J replaced by Γ `alg J ;F

we remove the non-determinism associated to ∆

deterministic, syntax-directed construction of a proof obligation F

F is later discharged by an external theorem prover

if both steps succeed, the code is well-typed

algorithmic type-checking is sound and complete

55 / 76

Example

Affine Refinement Typing

We have to choose where to use affine resources:

Val Refine
Γ; ∆1 ` M : T Γ; ∆2 ` F{M/x} ∆ ↪→ ∆1,∆2

Γ; ∆ ` M : {x : T | F}

Affine Refinement Typing

Values are partially annotated to make type-checking syntax-directed

The algorithmic typing rules collect the formulas required for typing,
which are then automatically discharged:

Val Refine
Γ `alg M : T ;F ′

Γ `alg M{x : |F} : {x : T | F};F ′ ⊗ F{M/x}

56 / 76

Example

Affine Refinement Typing

We have to choose where to use affine resources:

Val Refine
Γ; ∆1 ` M : T Γ; ∆2 ` F{M/x} ∆ ↪→ ∆1,∆2

Γ; ∆ ` M : {x : T | F}

Affine Refinement Typing

Values are partially annotated to make type-checking syntax-directed

The algorithmic typing rules collect the formulas required for typing,
which are then automatically discharged:

Val Refine
Γ `alg M : T ;F ′

Γ `alg M{x : |F} : {x : T | F};F ′ ⊗ F{M/x}

57 / 76

Typing cryptographic libraries

seal : α→ Un Secret list〈α ∗ Un〉 unseal : Un→ α
m:α //
c:Unoo

c:Unoo
m:α //

Symbolic cryptography

We prove properties in the symbolic setting, using standard sealing-based
cryptographic libraries developed for F7/F*

Key aspects

Communication and cryptographic libraries build on exponential types,
which do not carry any affine refinements (they are all serialized)

Consequently, we can just reuse standard typed cryptographic libraries

58 / 76

Typing cryptographic libraries

seal : α→ Un Secret list〈α ∗ Un〉 unseal : Un→ α
m:α //
c:Unoo

c:Unoo
m:α //

Symbolic cryptography

We prove properties in the symbolic setting, using standard sealing-based
cryptographic libraries developed for F7/F*

Key aspects

Communication and cryptographic libraries build on exponential types,
which do not carry any affine refinements (they are all serialized)

Consequently, we can just reuse standard typed cryptographic libraries

59 / 76

Case study: EPMO (1/2)

An e-commerce protocol proposed by Guttman et al.1

B C M
enc((C ,nC ,g ,p),ek(kM)) //

assume ∀y .(Pay(y , p,M, nM) (Ship(M, g ,C))

enc(sign((nC ,nM ,M,g ,C ,p),k ′
M),ek(kC))oo

enc((C ,nC ,nM ,p),ek(kB))oo

assume ∀y .Pay(B, p, y , nM)

enc(sign((B,C ,nC ,nB ,nM ,p),k ′
B),ek(kC)) //

assert Ship(M, g ,C)

enc(sign((B,C ,nC ,nB ,nM ,p),k ′
B),ek(kM)) //

enc(sign((B,M,nB ,nM),k ′
M),ek(kB))oo

Challenges

1 the nonce nC is checked twice by C (steps 2 and 4)

2 the verification key types must convey structured formulas

1We consider here a simpler (safe) variant of the protocol
60 / 76

Case study: EPMO (1/2)

An e-commerce protocol proposed by Guttman et al.1

B C M
enc((C ,nC ,g ,p),ek(kM)) //

assume ∀y .(Pay(y , p,M, nM) (Ship(M, g ,C))
enc(sign((nC ,nM ,M,g ,C ,p),k ′

M),ek(kC))oo
enc((C ,nC ,nM ,p),ek(kB))oo

assume ∀y .Pay(B, p, y , nM)
enc(sign((B,C ,nC ,nB ,nM ,p),k ′

B),ek(kC)) //

assert Ship(M, g ,C)
enc(sign((B,C ,nC ,nB ,nM ,p),k ′

B),ek(kM)) //

enc(sign((B,M,nB ,nM),k ′
M),ek(kB))oo

Challenges

1 the nonce nC is checked twice by C (steps 2 and 4)

2 the verification key types must convey structured formulas

1We consider here a simpler (safe) variant of the protocol
61 / 76

Case study: EPMO (1/2)

An e-commerce protocol proposed by Guttman et al.1

B C M
enc((C ,nC ,g ,p),ek(kM)) //

assume ∀y .(Pay(y , p,M, nM) (Ship(M, g ,C))
enc(sign((nC ,nM ,M,g ,C ,p),k ′

M),ek(kC))oo
enc((C ,nC ,nM ,p),ek(kB))oo

assume ∀y .Pay(B, p, y , nM)
enc(sign((B,C ,nC ,nB ,nM ,p),k ′

B),ek(kC)) //

assert Ship(M, g ,C)
enc(sign((B,C ,nC ,nB ,nM ,p),k ′

B),ek(kM)) //

enc(sign((B,M,nB ,nM),k ′
M),ek(kB))oo

Challenges

1 the nonce nC is checked twice by C (steps 2 and 4)

2 the verification key types must convey structured formulas

1We consider here a simpler (safe) variant of the protocol
62 / 76

Case study: EPMO (2/2)

Challenges

1 the nonce nC is checked twice by C (steps 2 and 4)

I we cannot construe nC as an affine value
I solution: assume two predicates Nonce1(nC) and Nonce2(nC)

2 the verification key types must convey structured formulas
I if we had only affine values, we should look for an encoding (cf. F ∗)
I but this is not a problem for our framework

Verification
1 we enrich the code with suitable (refinement) types

2 we introduce the necessary serializers

3 we type-check the protocol

The proof obligation is dispatched by llprover in less than 20 ms
(nevertheless, automated theorem provers for affine logic are far from
being optimal)

63 / 76

Case study: EPMO (2/2)

Challenges

1 the nonce nC is checked twice by C (steps 2 and 4)
I we cannot construe nC as an affine value

I solution: assume two predicates Nonce1(nC) and Nonce2(nC)

2 the verification key types must convey structured formulas
I if we had only affine values, we should look for an encoding (cf. F ∗)
I but this is not a problem for our framework

Verification
1 we enrich the code with suitable (refinement) types

2 we introduce the necessary serializers

3 we type-check the protocol

The proof obligation is dispatched by llprover in less than 20 ms
(nevertheless, automated theorem provers for affine logic are far from
being optimal)

64 / 76

Case study: EPMO (2/2)

Challenges

1 the nonce nC is checked twice by C (steps 2 and 4)
I we cannot construe nC as an affine value
I solution: assume two predicates Nonce1(nC) and Nonce2(nC)

2 the verification key types must convey structured formulas
I if we had only affine values, we should look for an encoding (cf. F ∗)
I but this is not a problem for our framework

Verification
1 we enrich the code with suitable (refinement) types

2 we introduce the necessary serializers

3 we type-check the protocol

The proof obligation is dispatched by llprover in less than 20 ms
(nevertheless, automated theorem provers for affine logic are far from
being optimal)

65 / 76

Case study: EPMO (2/2)

Challenges

1 the nonce nC is checked twice by C (steps 2 and 4)
I we cannot construe nC as an affine value
I solution: assume two predicates Nonce1(nC) and Nonce2(nC)

2 the verification key types must convey structured formulas

I if we had only affine values, we should look for an encoding (cf. F ∗)
I but this is not a problem for our framework

Verification
1 we enrich the code with suitable (refinement) types

2 we introduce the necessary serializers

3 we type-check the protocol

The proof obligation is dispatched by llprover in less than 20 ms
(nevertheless, automated theorem provers for affine logic are far from
being optimal)

66 / 76

Case study: EPMO (2/2)

Challenges

1 the nonce nC is checked twice by C (steps 2 and 4)
I we cannot construe nC as an affine value
I solution: assume two predicates Nonce1(nC) and Nonce2(nC)

2 the verification key types must convey structured formulas
I if we had only affine values, we should look for an encoding (cf. F ∗)

I but this is not a problem for our framework

Verification
1 we enrich the code with suitable (refinement) types

2 we introduce the necessary serializers

3 we type-check the protocol

The proof obligation is dispatched by llprover in less than 20 ms
(nevertheless, automated theorem provers for affine logic are far from
being optimal)

67 / 76

Case study: EPMO (2/2)

Challenges

1 the nonce nC is checked twice by C (steps 2 and 4)
I we cannot construe nC as an affine value
I solution: assume two predicates Nonce1(nC) and Nonce2(nC)

2 the verification key types must convey structured formulas
I if we had only affine values, we should look for an encoding (cf. F ∗)
I but this is not a problem for our framework

Verification
1 we enrich the code with suitable (refinement) types

2 we introduce the necessary serializers

3 we type-check the protocol

The proof obligation is dispatched by llprover in less than 20 ms
(nevertheless, automated theorem provers for affine logic are far from
being optimal)

68 / 76

Case study: EPMO (2/2)

Challenges

1 the nonce nC is checked twice by C (steps 2 and 4)
I we cannot construe nC as an affine value
I solution: assume two predicates Nonce1(nC) and Nonce2(nC)

2 the verification key types must convey structured formulas
I if we had only affine values, we should look for an encoding (cf. F ∗)
I but this is not a problem for our framework

Verification
1 we enrich the code with suitable (refinement) types

2 we introduce the necessary serializers

3 we type-check the protocol

The proof obligation is dispatched by llprover in less than 20 ms
(nevertheless, automated theorem provers for affine logic are far from
being optimal)

69 / 76

Take-home message

Affine logic for security

Affine logic elegantly captures security properties where the number
of actions matters (e.g., injective agreement)

Affine security properties for distributed systems can be statically
enforced, modularly and efficiently

Under the hood...

We investigated a link between affine logic connectives and standard
cryptographic patterns for authorization

We designed a modular refinement type system for enforcing
resource-aware authorization policies in protocol implementations

We devised a sound and complete algorithmic variant

We showed the expressiveness of our framework by type-checking the
implementation of

I a variant of the EPMO protocol
I Kerberos

70 / 76

Take-home message

Affine logic for security

Affine logic elegantly captures security properties where the number
of actions matters (e.g., injective agreement)

Affine security properties for distributed systems can be statically
enforced, modularly and efficiently

Under the hood...

We investigated a link between affine logic connectives and standard
cryptographic patterns for authorization

We designed a modular refinement type system for enforcing
resource-aware authorization policies in protocol implementations

We devised a sound and complete algorithmic variant

We showed the expressiveness of our framework by type-checking the
implementation of

I a variant of the EPMO protocol
I Kerberos

71 / 76

Take-home message

Affine logic for security

Affine logic elegantly captures security properties where the number
of actions matters (e.g., injective agreement)

Affine security properties for distributed systems can be statically
enforced, modularly and efficiently

Under the hood...

We investigated a link between affine logic connectives and standard
cryptographic patterns for authorization

We designed a modular refinement type system for enforcing
resource-aware authorization policies in protocol implementations

We devised a sound and complete algorithmic variant

We showed the expressiveness of our framework by type-checking the
implementation of

I a variant of the EPMO protocol
I Kerberos

72 / 76

Take-home message

Affine logic for security

Affine logic elegantly captures security properties where the number
of actions matters (e.g., injective agreement)

Affine security properties for distributed systems can be statically
enforced, modularly and efficiently

Under the hood...

We investigated a link between affine logic connectives and standard
cryptographic patterns for authorization

We designed a modular refinement type system for enforcing
resource-aware authorization policies in protocol implementations

We devised a sound and complete algorithmic variant

We showed the expressiveness of our framework by type-checking the
implementation of

I a variant of the EPMO protocol
I Kerberos

73 / 76

Take-home message

Affine logic for security

Affine logic elegantly captures security properties where the number
of actions matters (e.g., injective agreement)

Affine security properties for distributed systems can be statically
enforced, modularly and efficiently

Under the hood...

We investigated a link between affine logic connectives and standard
cryptographic patterns for authorization

We designed a modular refinement type system for enforcing
resource-aware authorization policies in protocol implementations

We devised a sound and complete algorithmic variant

We showed the expressiveness of our framework by type-checking the
implementation of

I a variant of the EPMO protocol
I Kerberos

74 / 76

Thank you for your attention!

