Logical Foundations of Secure Resource Management in Protocol Implementations

 ${\sf Matteo~Maffei}^1 \\ {\sf joint~work~with~Michele~Bugliesi}^2, {\sf Fabienne~Eigner}^1 {\sf ~and~Stefano~Calzavara}^2 \\$

¹CISPA, Saarland University

²Università Ca' Foscari Venezia

26 November 2014, Joint EasyCrypt-F*-CryptoVerif School, Paris

POST'13, best EATCS paper award at ETAPS'13.

Outline

- Why? (Beyond FOL refinements)
- What? (Affine logic for security protocols)
- How? (Proof techniques)

Verified implementations

- narrow the gap between formal model and implementation
- combine type-checking with general-purpose theorem proving
- efficient and modular verification

Verified implementations

- narrow the gap between formal model and implementation
- combine type-checking with general-purpose theorem proving
- efficient and modular verification

Methodology

- annotate the code with logical formulas
 - assumptions: formulas which are assumed to hold
 - assertions: formulas which must be entailed by the assumptions

Verified implementations

- narrow the gap between formal model and implementation
- combine type-checking with general-purpose theorem proving
- efficient and modular verification

Methodology

- annotate the code with logical formulas
 - assumptions: formulas which are assumed to hold
 - assertions: formulas which must be entailed by the assumptions
- type-check the code against appropriate refinement types

Verified implementations

- narrow the gap between formal model and implementation
- combine type-checking with general-purpose theorem proving
- efficient and modular verification

Methodology

- annotate the code with logical formulas
 - assumptions: formulas which are assumed to hold
 - assertions: formulas which must be entailed by the assumptions
- type-check the code against appropriate refinement types
- well-typed programs are robustly safe: assertions are always entailed by the introduced assumptions, even in presence of an opponent

A glance at refinement typing

A glance at refinement typing

A glance at refinement typing

$$C \hspace{1cm} S$$

$$assume \hspace{0.1cm} Good(msg)$$

$$-----sign(msg:\{x:string \mid Good(x)\},sk(C)) \longrightarrow$$

$$assert \hspace{0.1cm} Good(msg)$$

Refinement typing

```
sk(C): SigKey({x : string | Good(x)})
```

- C must prove that Good(msg) holds true upon signing
- S can rely on Good(msg) being true upon verification

Replays

This run is safe...

In FOL: $Good(msg) \vdash Good(msg) \land Good(msg)$

...but sometimes it should not!

• What if Good(msg) expresses a bank transaction?

Outline

- Why? (Beyond FOL refinements)
- What? (Affine refinements for security protocols)
- How? (Proof techniques)

Resource-aware properties

Counting

Some properties require to count the number of times a certain resource is used (or an action is performed)

- Injective agreement or strong authentication: every end-event is preceded by a distinct begin-event
- No double-vote: cannot vote more than once

Resource-aware properties

Counting

Some properties require to count the number of times a certain resource is used (or an action is performed)

- Injective agreement or strong authentication: every end-event is preceded by a *distinct* begin-event
- No double-vote: cannot vote more than once

Affine (or resource-aware) logic

Such properties can be naturally expressed in affine logic (no contraction)

- affine hypotheses A can be used at most once
- exponential hypotheses !A can be used arbitrarily often

For instance, $Good(msg) \not\vdash Good(msg) \otimes Good(msg)$ (\otimes denotes conjunction in affine logic)

Resource-aware properties

Counting

Some properties require to count the number of times a certain resource is used (or an action is performed)

- Injective agreement or strong authentication: every end-event is preceded by a distinct begin-event
- No double-vote: cannot vote more than once

Affine (or resource-aware) logic

Such properties can be naturally expressed in affine logic (no contraction)

- affine hypotheses A can be used at most once
- exponential hypotheses !A can be used arbitrarily often

For instance, $Good(msg) \not\vdash Good(msg) \otimes Good(msg)$

(⊗ denotes conjunction in affine logic)

How can we type-check cryptographic protocols that achieve resource-aware properties?


```
Guarded refinement types sk(C) : SigKey(x : int, \{y : string \mid !(Nonce(x) \multimap Good(y))\})
```



```
Guarded refinement types sk(C) : SigKey(x : int, \{y : string \mid !(Nonce(x) \multimap Good(y))\})
```



```
Type-checking the assertion
Nonce(n), !(Nonce(n) \multimap Good(msg)) \vdash Good(msg)
```


Preventing duplication

Nonce(n), $!(Nonce(n) \multimap Good(msg)) \nvdash Good(msg) \otimes Good(msg)$

Contributions

- a theory of exponential serialization
- a type system for enforcing affine logic policies on application code

Contributions

- a theory of exponential serialization
- a type system for enforcing affine logic policies on application code

The type system

the theory is developed for RCF (a core calculus of F#)

Contributions

- a theory of exponential serialization
- a type system for enforcing affine logic policies on application code

- the theory is developed for RCF (a core calculus of F#)
- the design leverages the theory of exponential serialization
 - no affine types: we can encode them
 - affine formulas: clearly separated from the typing information

Contributions

- a theory of exponential serialization
- a type system for enforcing affine logic policies on application code

- the theory is developed for RCF (a core calculus of F#)
- the design leverages the theory of exponential serialization
 - no affine types: we can encode them
 - affine formulas: clearly separated from the typing information
 - this simplifies both the theory and the implementation

Contributions

- a theory of exponential serialization
- a type system for enforcing affine logic policies on application code

- the theory is developed for RCF (a core calculus of F#)
- the design leverages the theory of exponential serialization
 - no affine types: we can encode them
 - affine formulas: clearly separated from the typing information
 - this simplifies both the theory and the implementation
- well-typed programs are robustly safe
 - the multiplicative conjunction of the assertions is entailed by the introduced assumptions

Contributions

- a theory of exponential serialization
- a type system for enforcing affine logic policies on application code

- the theory is developed for RCF (a core calculus of F#)
- the design leverages the theory of exponential serialization
 - no affine types: we can encode them
 - affine formulas: clearly separated from the typing information
 - this simplifies both the theory and the implementation
- well-typed programs are robustly safe
 - the multiplicative conjunction of the assertions is entailed by the introduced assumptions
 - even in presence of an arbitrary opponent

Outline

- Why? (Beyond FOL refinements)
- What? (Affine refinements for security protocols)
- How? (Proof techniques)

Example: a streaming service

Authorization policy

$$\mathcal{P} = ! \forall x, y. (Paid(x, \$1) \multimap Watch(x, y))$$

Example: a streaming service

Authorization policy

$$\mathcal{P} = ! \forall x, y. (Paid(x, \$1) \multimap Watch(x, y))$$

Implementing the streaming service

Implementing the streaming service

```
assume Paid(C, \$1)
                       ---\{C, movie, n\}_{sk(C)}
                                           assert Watch(C, movie)
let client C addC addS m sk =
    let xn = recv addC in assume Paid(C,$1);
    let msg = sign (C,m,xn) sk in send addS msg
val mkNonce: unit -> {x: bytes | Nonce(x)}
let serv S addC addS vk =
    let n = mkNonce () in send addC n;
    let msg = recv addS in
    let (xC, xm, xn) = verify msg vk in
    if (xn = n) then
        assert Watch(xC,xm)
```

Type-checking the server

Verification key type

 $vk : VerKey(x : T_c, y : T_m, \{z : T_n \mid !(Nonce(z) \multimap Paid(x, \$1))\})$

Type-checking the server

Verification key type

```
vk : VerKey(x : T_c, y : T_m, \{z : T_n \mid !(Nonce(z) \multimap Paid(x, \$1))\})
```

```
val mkNonce: unit -> {x: bytes | Nonce(x)}

let serv S addC addS vk =
    let n = mkNonce () in send addC n;
    // Nonce(n) holds true
    let msg = recv addS in
    let (xC, xm, xn) = verify msg vk in
    // !(Nonce(xn) --o Paid(xC,$1)) holds true
    if (xn = n) then
        // !(xn = n) holds true
        assert Watch(xC,xm)
```

Type-checking the server

Verification key type

```
vk : VerKey(x : T<sub>c</sub>, y : T<sub>m</sub>, {z : T<sub>n</sub> | !(Nonce(z) -- Paid(x,$1))})
val mkNonce: unit -> {x: bytes | Nonce(x)}

let serv S addC addS vk =
    let n = mkNonce () in send addC n;
    // Nonce(n) holds true
    let msg = recv addS in
    let (xC, xm, xn) = verify msg vk in
```

Type-checking the assertion

if (xn = n) then

Recall $\mathcal{P} = ! \forall x, y. (Paid(x, \$1) \multimap Watch(x, y))$, we have:

// !(Nonce(xn) --o Paid(xC,\$1)) holds true

// !(xn = n) holds true
assert Watch(xC,xm)

 \mathcal{P} , Nonce(n), !(xn = n), $!(Nonce(xn) \multimap Paid(xC, \$1)) \vdash Watch(xC, xm)$

Type-checking the client

Signing key type

 $\mathit{sk} : \mathit{SigKey}(x : T_c, y : T_m, \{z : T_n \mid !(\mathit{Nonce}(z) \multimap \mathit{Paid}(x, \$1))\})$

Type-checking the client

// Paid(C,\$1) holds true

```
Signing key type sk : SigKey(x : T_c, y : T_m, \{z : T_n \mid !(Nonce(z) \multimap Paid(x, \$1))\})

let client C addC addS m sk = let xn = recv addC in assume Paid(C, \$1);
```

let msg = sign (C,m,xn) sk in send addS msg

Type-checking the client

```
Signing key type sk : SigKey(x : T_c, y : T_m, \{z : T_n \mid !(Nonce(z) \multimap Paid(x,\$1))\}) let client C addC addS m sk = let xn = recv addC in assume Paid(C,\$1);
```

Type-checking the signature

// Paid(C,\$1) holds true

```
We must prove: Paid(C, 1) \vdash !(Nonce(xn) \multimap Paid(C, 1))
```

let msg = sign (C,m,xn) sk in send addS msg

Type-checking the client

```
Signing key type sk : SigKey(x : T_c, y : T_m, \{z : T_n \mid !(Nonce(z) \multimap Paid(x,\$1))\}) let client C addC addS m sk = let xn = recv addC in assume Paid(C,\$1);
```

Type-checking the signature

We must prove: $Paid(C, 1) \vdash !(Nonce(xn) \multimap Paid(C, 1))$

let msg = sign (C,m,xn) sk in send addS msg

• ... but this is not true in affine logic!

// Paid(C,\$1) holds true

Type-checking the client

```
Signing key type sk : SigKey(x : T_c, y : T_m, \{z : T_n \mid !(Nonce(z) \multimap Paid(x, \$1))\})

let client C addC addS m sk =
```

```
let xn = recv addC in assume Paid(C,$1);
// Paid(C,$1) holds true
let msg = sign (C,m,xn) sk in send addS msg
```

Type-checking the signature

We must prove: $Paid(C, \$1) \vdash !(Nonce(xn) \multimap Paid(C, \$1))$

- ... but this is not true in affine logic!
- This implies that the signing operation is not well-typed!

Signing key type

```
sk: SigKey(x:T_c,y:T_m,\{z:T_n\mid !(Nonce(z)\multimap Paid(x,\$1))\})
```

```
let client C addC addS m sk =
  let xn = recv addC in assume Paid(C,$1);
  // Paid(C,$1) holds true
  let msg = sign (C,m,xn) sk in send addS msg
```

Signing key type

```
sk: SigKey(x: T_c, y: T_m, \{z: T_n \mid !(Nonce(z) \multimap Paid(x, \$1))\})
```

```
let client C addC addS m sk =
  let xn = recv addC in assume Paid(C,$1);
  // Paid(C,$1) holds true
  let msg = sign (C,m,xn) sk in send addS msg
```

Solution

Add an explicit serializer among the assumptions

$$S = ! \forall x, y. (Paid(x, \$1) \multimap ! (Nonce(y) \multimap Paid(x, \$1)))$$

Signing key type

```
sk: SigKey(x:T_c, y:T_m, \{z:T_n \mid !(Nonce(z) \multimap Paid(x, \$1))\})
```

```
let client C addC addS m sk =
  let xn = recv addC in assume Paid(C,$1);
  // Paid(C,$1) holds true
  let msg = sign (C,m,xn) sk in send addS msg
```

Solution

Add an explicit serializer among the assumptions

$$S = ! \forall x, y. (Paid(x, \$1) \multimap ! (Nonce(y) \multimap Paid(x, \$1)))$$

Notice that we have:

$$S$$
, $Paid(C, \$1) \vdash !(Nonce(xn) \multimap Paid(C, \$1))$

Benefits

• modularity: let affine logic handle resource management!

Benefits

- modularity: let affine logic handle resource management!
- expressiveness: nonces, TIDs, timestamps, session keys, affine types

Benefits

- modularity: let affine logic handle resource management!
- expressiveness: nonces, TIDs, timestamps, session keys, affine types
- insight: a general logical encoding for distributed authorization

Benefits

- modularity: let affine logic handle resource management!
- expressiveness: nonces, TIDs, timestamps, session keys, affine types
- insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

Benefits

- modularity: let affine logic handle resource management!
- expressiveness: nonces, TIDs, timestamps, session keys, affine types
- insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

$$S = ! \forall x, y. (Paid(x, 1) \multimap ! (Nonce(y) \multimap Paid(x, 1)))$$

$$Paid(C, \$1), Nonce(n), Nonce(n) \not\vdash Paid(C, \$1) \otimes Paid(C, \$1)$$

 $Paid(C, \$1), Nonce(n), Nonce(n), S \vdash Paid(C, \$1) \otimes Paid(C, \$1)$

Benefits

- modularity: let affine logic handle resource management!
- expressiveness: nonces, TIDs, timestamps, session keys, affine types
- insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

$$S = ! \forall x, y. (Paid(x, 1) \multimap ! (Nonce(y) \multimap Paid(x, 1)))$$

$$Paid(C, \$1), Nonce(n), Nonce(n) \not\vdash Paid(C, \$1) \otimes Paid(C, \$1)$$

 $Paid(C, \$1), Nonce(n), Nonce(n), S \vdash Paid(C, \$1) \otimes Paid(C, \$1)$

In the paper we identify sufficient syntactic conditions for soundness

Overview of the type system

Typing environments

Type judgements of the form Γ ; $\Delta \vdash \mathcal{J}$

- \bullet Γ is a list of type bindings
- ullet Δ is a multiset of affine formulas

Overview of the type system

Typing environments

Type judgements of the form Γ ; $\Delta \vdash \mathcal{J}$

- Γ is a list of type bindings
- ullet Δ is a multiset of affine formulas

Typing rules

General structure of a typing rule

$$\frac{\Gamma; \Delta_1 \vdash \mathcal{J}_1 \qquad \dots \qquad \Gamma; \Delta_n \vdash \mathcal{J}_n \qquad \Delta \hookrightarrow \Delta_1, \dots, \Delta_n}{\Gamma; \Delta \vdash \mathcal{J}}$$

The rewriting $\Delta \hookrightarrow \Delta'$ allows for manipulating the logical context according to the entailment relation (e.g., split conjunctions or duplicate exponential resources)

Example

Standard Refinement Typing

VAL REFINE
$$\frac{\Gamma; \Delta \vdash M : T \qquad \Gamma; \Delta \vdash F\{M/x\}}{\Gamma; \Delta \vdash M : \{x : T \mid F\}}$$

Example

Standard Refinement Typing

VAL REFINE
$$\frac{\Gamma; \Delta \vdash M : T \qquad \Gamma; \Delta \vdash F\{M/x\}}{\Gamma; \Delta \vdash M : \{x : T \mid F\}}$$

Affine Refinement Typing

We have to choose where to use affine resources:

$$\frac{\Gamma; \Delta_1 \vdash M : T \qquad \Gamma; \Delta_2 \vdash F\{M/x\} \qquad \Delta \hookrightarrow \Delta_1, \Delta_2}{\Gamma; \Delta \vdash M : \{x : T \mid F\}}$$

E.g.,
$$M:T$$
; $A \otimes B \vdash M: \{y: \{x:T \mid A\} \mid B\}$ since $A \otimes B \hookrightarrow A, B$

Environment rewriting is highly non-deterministic and this hinders the implementation of a type-checker:

- the type-checker should incorporate logical entailment...
- ... and distribute formulas among subderivations

Environment rewriting is highly non-deterministic and this hinders the implementation of a type-checker:

- the type-checker should incorporate logical entailment...
- ... and distribute formulas among subderivations

Algorithmic formulation

 Γ ; $\Delta \vdash \mathcal{J}$ replaced by $\Gamma \vdash_{\mathsf{alg}} \mathcal{J}$; F

- ullet we remove the non-determinism associated to Δ
- deterministic, syntax-directed construction of a proof obligation F

Environment rewriting is highly non-deterministic and this hinders the implementation of a type-checker:

- the type-checker should incorporate logical entailment...
- ... and distribute formulas among subderivations

Algorithmic formulation

 Γ ; $\Delta \vdash \mathcal{J}$ replaced by $\Gamma \vdash_{\mathsf{alg}} \mathcal{J}$; F

- ullet we remove the non-determinism associated to Δ
- deterministic, syntax-directed construction of a proof obligation F
- F is later discharged by an external theorem prover
- if both steps succeed, the code is well-typed

Environment rewriting is highly non-deterministic and this hinders the implementation of a type-checker:

- the type-checker should incorporate logical entailment...
- ... and distribute formulas among subderivations

Algorithmic formulation

 Γ ; $\Delta \vdash \mathcal{J}$ replaced by $\Gamma \vdash_{\mathsf{alg}} \mathcal{J}$; F

- ullet we remove the non-determinism associated to Δ
- deterministic, syntax-directed construction of a proof obligation F
- F is later discharged by an external theorem prover
- if both steps succeed, the code is well-typed
- algorithmic type-checking is sound and complete

Example

Affine Refinement Typing

We have to choose where to use affine resources:

$$\frac{\Gamma; \Delta_1 \vdash M : T}{\Gamma; \Delta_1 \vdash M : T} \frac{\Gamma; \Delta_2 \vdash F\{M/x\}}{\Gamma; \Delta \vdash M : \{x : T \mid F\}} \xrightarrow{\Delta \hookrightarrow \Delta_1, \Delta_2}$$

Example

Affine Refinement Typing

We have to choose where to use affine resources:

```
\frac{\Gamma; \Delta_1 \vdash M : T}{\Gamma; \Delta_1 \vdash M : T} \frac{\Gamma; \Delta_2 \vdash F\{M/x\}}{\Gamma; \Delta \vdash M : \{x : T \mid F\}} \frac{\Delta \hookrightarrow \Delta_1, \Delta_2}{\Gamma; \Delta \vdash M : \{x : T \mid F\}}
```

Affine Refinement Typing

- Values are partially annotated to make type-checking syntax-directed
- The algorithmic typing rules collect the formulas required for typing, which are then automatically discharged:

VAL REFINE
$$\frac{\Gamma \vdash_{\mathsf{alg}} M : T; F'}{\Gamma \vdash_{\mathsf{alg}} M_{\{x: \bot F\}} : \{x : T \mid F\}; F' \otimes F\{M/x\}}$$

Typing cryptographic libraries

Symbolic cryptography

We prove properties in the symbolic setting, using standard *sealing-based* cryptographic libraries developed for F7/F*

Typing cryptographic libraries

Symbolic cryptography

We prove properties in the symbolic setting, using standard *sealing-based* cryptographic libraries developed for F7/F*

Key aspects

- Communication and cryptographic libraries build on *exponential types*, which do not carry any affine refinements (they are all serialized)
- Consequently, we can just reuse standard typed cryptographic libraries

An e-commerce protocol proposed by Guttman et al.¹

¹We consider here a simpler (safe) variant of the protocol

An e-commerce protocol proposed by Guttman et al.¹

¹We consider here a simpler (safe) variant of the protocol

An e-commerce protocol proposed by Guttman et al.¹

- the nonce n_C is checked twice by C (steps 2 and 4)
- 2 the verification key types must convey structured formulas

¹We consider here a simpler (safe) variant of the protocol

Challenges

• the nonce n_C is checked twice by C (steps 2 and 4)

- **1** the nonce n_C is checked twice by C (steps 2 and 4)
 - we cannot construe n_C as an *affine* value

- ① the nonce n_C is checked twice by C (steps 2 and 4)
 - we cannot construe n_C as an affine value
 - ▶ solution: assume two predicates $Nonce_1(n_C)$ and $Nonce_2(n_C)$

- ① the nonce n_C is checked twice by C (steps 2 and 4)
 - we cannot construe n_C as an affine value
 - ▶ solution: assume two predicates $Nonce_1(n_C)$ and $Nonce_2(n_C)$
- the verification key types must convey structured formulas

- ① the nonce n_C is checked twice by C (steps 2 and 4)
 - we cannot construe n_C as an affine value
 - ▶ solution: assume two predicates $Nonce_1(n_C)$ and $Nonce_2(n_C)$
- the verification key types must convey structured formulas
 - \blacktriangleright if we had only affine values, we should look for an *encoding* (cf. F^*)

- ① the nonce n_C is checked twice by C (steps 2 and 4)
 - we cannot construe n_C as an affine value
 - ▶ solution: assume two predicates $Nonce_1(n_C)$ and $Nonce_2(n_C)$
- 2 the verification key types must convey structured formulas
 - if we had only affine values, we should look for an encoding (cf. F^*)
 - but this is not a problem for our framework

Challenges

- **1** the nonce n_C is checked twice by C (steps 2 and 4)
 - we cannot construe n_C as an affine value
 - \triangleright solution: assume two predicates $Nonce_1(n_C)$ and $Nonce_2(n_C)$
- 2 the verification key types must convey structured formulas
 - if we had only affine values, we should look for an encoding (cf. F^*)
 - but this is not a problem for our framework

Verification

- we enrich the code with suitable (refinement) types
- 2 we introduce the necessary serializers
- we type-check the protocol

The proof obligation is dispatched by 11prover in less than 20 ms (nevertheless, automated theorem provers for affine logic are far from being optimal)

Affine logic for security

- Affine logic elegantly captures security properties where the number of actions matters (e.g., injective agreement)
- Affine security properties for distributed systems can be statically enforced, modularly and efficiently

Affine logic for security

- Affine logic elegantly captures security properties where the number of actions matters (e.g., injective agreement)
- Affine security properties for distributed systems can be statically enforced, modularly and efficiently

Under the hood...

 We investigated a link between affine logic connectives and standard cryptographic patterns for authorization

Affine logic for security

- Affine logic elegantly captures security properties where the number of actions matters (e.g., injective agreement)
- Affine security properties for distributed systems can be statically enforced, modularly and efficiently

Under the hood...

- We investigated a link between affine logic connectives and standard cryptographic patterns for authorization
- We designed a modular refinement type system for enforcing resource-aware authorization policies in protocol implementations

Affine logic for security

- Affine logic elegantly captures security properties where the number of actions matters (e.g., injective agreement)
- Affine security properties for distributed systems can be statically enforced, modularly and efficiently

Under the hood...

- We investigated a link between affine logic connectives and standard cryptographic patterns for authorization
- We designed a modular refinement type system for enforcing resource-aware authorization policies in protocol implementations
- We devised a sound and complete algorithmic variant

Affine logic for security

- Affine logic elegantly captures security properties where the number of actions matters (e.g., injective agreement)
- Affine security properties for distributed systems can be statically enforced, modularly and efficiently

Under the hood...

- We investigated a link between affine logic connectives and standard cryptographic patterns for authorization
- We designed a modular refinement type system for enforcing resource-aware authorization policies in protocol implementations
- We devised a sound and complete algorithmic variant
- We showed the expressiveness of our framework by type-checking the implementation of
 - a variant of the EPMO protocol
 - Kerberos

Thank you for your attention!