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Outline

e Why? (Beyond FOL refinements)
e What? (Affine logic for security protocols)
e How? (Proof techniques)
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Refinement types for secure implementations

Verified implementations
@ narrow the gap between formal model and implementation
@ combine type-checking with general-purpose theorem proving

o efficient and modular verification

/76



Refinement types for secure implementations

Verified implementations
@ narrow the gap between formal model and implementation
@ combine type-checking with general-purpose theorem proving

o efficient and modular verification

Methodology

@ annotate the code with logical formulas

assumptions: formulas which are assumed to hold
assertions: formulas which must be entailed by the assumptions




Refinement types for secure implementations

Verified implementations
@ narrow the gap between formal model and implementation
@ combine type-checking with general-purpose theorem proving

o efficient and modular verification

Methodology

@ annotate the code with logical formulas

assumptions: formulas which are assumed to hold
assertions: formulas which must be entailed by the assumptions

@ type-check the code against appropriate refinement types




Refinement types for secure implementations

Verified implementations
@ narrow the gap between formal model and implementation
@ combine type-checking with general-purpose theorem proving

o efficient and modular verification

Methodology

@ annotate the code with logical formulas

assumptions: formulas which are assumed to hold
assertions: formulas which must be entailed by the assumptions

@ type-check the code against appropriate refinement types

o well-typed programs are robustly safe: assertions are always entailed
by the introduced assumptions, even in presence of an opponent
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A glance at refinement typing

C S

assume Good(msg)

sign(msg,sk(C))

assert Good(msg)
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A glance at refinement typing

C S

assume Good(msg)

sign(msg:{x:string | Good(x)},sk(C))——

assert Good(msg)

Refinement typing
sk(C) : SigKey({x : string | Good(x)})

@ C must prove that Good(msg) holds true upon signing

@ S can rely on Good(msg) being true upon verification
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Replays

C 0] S

assume Good(msg)

sign(msg,sk(C))——
—sign(msg,sk(C))——

assert Good(msg)

sign(msg,sk(C))——

assert Good(msg)

This run is safe...
In FOL: Good(msg) = Good(msg) A Good(msg) J

...but sometimes it should not!
e What if Good(msg) expresses a bank transaction? J
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Outline

e Why? (Beyond FOL refinements)
e What? (Affine refinements for security protocols)

e How? (Proof techniques)
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Resource-aware properties
Counting

Some properties require to count the number of times a certain resource is
used (or an action is performed)

@ Injective agreement or strong authentication: every end-event is
preceded by a distinct begin-event

@ No double-vote: cannot vote more than once
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Resource-aware properties
Counting

Some properties require to count the number of times a certain resource is
used (or an action is performed)

@ Injective agreement or strong authentication: every end-event is
preceded by a distinct begin-event

@ No double-vote: cannot vote more than once

Affine (or resource-aware) logic

Such properties can be naturally expressed in affine logic (no contraction)
o affine hypotheses A can be used at most once
@ exponential hypotheses !A can be used arbitrarily often

For instance, Good(msg) I/ Good(msg) ® Good(msg)
(® denotes conjunction in affine logic)

How can we type-check cryptographic protocols that achieve

resource-aware properties?
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Resource-aware refinement typing

C S

assume Nonce(n)

assume Good(msg)

sign((n,msg),sk(C))———>

assert Good(msg)
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Resource-aware refinement typing

C S

assume Nonce(n)

assume Good(msg)
sign((n,msg),sk(C))———>
assert Good(msg)

Guarded refinement types
sk(C) : SigKey(x : int,{y : string | !(Nonce(x) — Good(y))}) J
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Resource-aware refinement typing

C S

assume Nonce(n)

assume Good(msg)

Prove: !(Nonce(n) — Good(msg))
——sign((n,msg),sk(C))———

Rely on: !(Nonce(n) — Good(msg))

assert Good(msg)

Guarded refinement types
sk(C) : SigKey(x : int,{y : string | !(Nonce(x) — Good(y))}) J
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Resource-aware refinement typing

C S

assume Nonce(n)

assume Good(msg)

Prove: |(Nonce(n) — Good(msg))
——sign((n,msg),sk(C))———

Rely on: !(Nonce(n) — Good(msg))

assert Good(msg)

Type-checking the assertion
Nonce(n), !(Nonce(n) — Good(msg)) F Good(msg) J
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Resource-aware refinement typing

C S

assume Nonce(n)

assume Good(msg)

Prove: |(Nonce(n) — Good(msg))
sign((n,msg),sk(C))———>

Rely on: !(Nonce(n) — Good(msg))

assert Good(msg)

Preventing duplication
Nonce(n), !(Nonce(n) — Good(msg)) ¥ Good(msg) ® Good(msg) J
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Static enforcement of resource-aware policies

Contributions
@ a theory of exponential serialization

@ a type system for enforcing affine logic policies on application code
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Static enforcement of resource-aware policies

Contributions
@ a theory of exponential serialization

@ a type system for enforcing affine logic policies on application code

v

The type system

o the theory is developed for RCF (a core calculus of F#)
@ the design leverages the theory of exponential serialization

no affine types: we can encode them
affine formulas: clearly separated from the typing information
this simplifies both the theory and the implementation

o well-typed programs are robustly safe
the multiplicative conjunction of the assertions is entailed by the

introduced assumptions
even in presence of an arbitrary opponent
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Outline

e Why? (Beyond FOL refinements)
e What? (Affine refinements for security protocols)

e How? (Proof techniques)
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Example: a streaming service

{CymOVie7n}sk(C)ﬁ

Authorization policy
P = IV¥x, y.(Paid(x, $1) — Watch(x, y)) J
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Example: a streaming service

C S

assume Paid(C,$1)

{C,movie,n} g c)

assert Watch(C, movie)

Authorization policy
P = I¥x, y.(Paid(x, $1) — Watch(x,y)) J
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Implementing the streaming service

C S

assume Paid(C,$1)

{C,movie,n} g c)

assert Watch(C, movie)
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Implementing the streaming service

C S

assume Paid(C,$1)

let

{C,movie,n} g c)

assert Watch(C, movie)

client C addC addS m sk =
let xn = recv addC in assume Paid(C,$1);
let msg = sign (C,m,xn) sk in send addS msg

val mkNonce: unit —> {x: bytes | Nonce(x)}

let

serv S addC addS vk =
let n = mkNonce () in send addC n;
let msg = recv addS in
let (xC, xm, xn) = verify msg vk in
if (xn = n) then

assert Watch(xC,xm)
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Type-checking the server

Verification key type
vk : VerKey(x : Te,y : Tmy{z: T, | {(Nonce(z) — Paid(x,$1))}) J
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Type-checking the server
Verification key type
vk : VerKey(x : Te,y : Tmy{z : T, | (Nonce(z) —o Paid(x,$1))}) J

val mkNonce: unit —> {x: bytes | Nonce(x)}

let serv S addC addS vk =
let n = mkNonce () in send addC n;
// Nonce(n) holds true
let msg = recv addS in
let (xC, xm, xn) = verify msg vk in
// !'(Nonce(xn) --o Paid(xC,$1)) holds true
if (xn = n) then
// '(xn = n) holds true
assert Watch(xC,xm)
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Type-checking the server
Verification key type
vk : VerKey(x : Te,y : Tmy{z : T, | (Nonce(z) —o Paid(x,$1))}) }

val mkNonce: unit —-> {x: bytes | Nonce(x)}

let serv S addC addS vk =
let n = mkNonce () in send addC n;
// Nonce(n) holds true
let msg = recv addS in
let (xC, xm, xn) = verify msg vk in
// !'(Nonce(xn) --o Paid(xC,$1)) holds true
if (xn = n) then
// '(xn = n) holds true
assert Watch(xC,xm)

Type-checking the assertion
Recall P = IVx, y.(Paid(x, $1) — Watch(x,y)), we have:

P, Nonce(n), !(xn = n),!(Nonce(xn) —o Paid(xC,$1)) - Watch(xC, xm)
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Type-checking the client

Signing key type
sk : SigKey(x : Te,y : T, {z: Ty | |(Nonce(z) —o Paid(x,$1))}) J
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Type-checking the client
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Type-checking the client

Signing key type
sk : SigKey(x : Te,y : Tmy{z: Ty | |(Nonce(z) — Paid(x,$1))}) J

let client C addC addS m sk =
let xn = recv addC in assume Paid(C,$1);
// Paid(C,$1) holds true
let msg = sign (C,m,xn) sk in send addS msg

Type-checking the signature
We must prove: Paid(C,$1) - !(Nonce(xn) — Paid(C,$1))
@ ... but this is not true in affine logic!

@ This implies that the signing operation is not well-typed!
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Exponential serialization (1/2)

Signing key type
sk : SigKey(x : Te,y : T, {z: T, | |(Nonce(z) —o Paid(x,$1))}) J

let client C addC addS m sk =
let xn = recv addC in assume Paid(C,$1);
// Paid(C,$1) holds true
let msg = sign (C,m,xn) sk in send addS msg
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Exponential serialization (1/2)

Signing key type
sk : SigKey(x : Te,y : T, {z: T, | |(Nonce(z) —o Paid(x,$1))}) J

let client C addC addS m sk =
let xn = recv addC in assume Paid(C,$1);
// Paid(C,$1) holds true
let msg = sign (C,m,xn) sk in send addS msg

Solution
Add an explicit serializer among the assumptions

S = ¥x, y.(Paid(x,$1) —o !(Nonce(y) —o Paid(x,$1)))
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Exponential serialization (1/2)

Signing key type
sk : SigKey(x : Te,y : T, {z: T, | |(Nonce(z) —o Paid(x,$1))}) J

let client C addC addS m sk =
let xn = recv addC in assume Paid(C,$1);
// Paid(C,$1) holds true
let msg = sign (C,m,xn) sk in send addS msg

Solution
Add an explicit serializer among the assumptions

S = Wx, y.(Paid(x,$1) — |(Nonce(y) — Paid(x, $1)))

Notice that we have:

S, Paid(C, $1) F !(Nonce(xn) — Paid(C, $1))
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Exponential serialization (2/2)

Benefits

@ modularity: let affine logic handle resource management!

42 /76



Exponential serialization (2/2)

Benefits
@ modularity: let affine logic handle resource management!

@ expressiveness: nonces, T1Ds, timestamps, session keys, affine types

43 /76



Exponential serialization (2/2)

Benefits
@ modularity: let affine logic handle resource management!
@ expressiveness: nonces, T1Ds, timestamps, session keys, affine types

@ insight: a general logical encoding for distributed authorization

44 /76



Exponential serialization (2/2)

Benefits
@ modularity: let affine logic handle resource management!
@ expressiveness: nonces, T1Ds, timestamps, session keys, affine types

@ insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

45 /76



Exponential serialization (2/2)

Benefits
@ modularity: let affine logic handle resource management!
@ expressiveness: nonces, T1Ds, timestamps, session keys, affine types

@ insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

S = Vx, y.(Paid(x,$1) — |(Nonce(y) — Paid(x, $1)))
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Exponential serialization (2/2)

Benefits
@ modularity: let affine logic handle resource management!
@ expressiveness: nonces, T1Ds, timestamps, session keys, affine types

@ insight: a general logical encoding for distributed authorization

Soundness

Adding serializers may weaken the authorization policy

S = Vx, y.(Paid(x,$1) — |(Nonce(y) — Paid(x, $1)))

Paid(C,$1), Nonce(n), Nonce(n) ¥ Paid(C,$1) ® Paid(C, $1)
Paid(C,$1), Nonce(n), Nonce(n),S F Paid(C,$1) ® Paid(C,$1)

In the paper we identify sufficient syntactic conditions for soundness
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Overview of the type system

Typing environments
Type judgements of the form I A = 7
o [ is a list of type bindings

@ A is a multiset of affine formulas

48 /76



Overview of the type system

Typing environments
Type judgements of the form I A - T
o [ is a list of type bindings

@ A is a multiset of affine formulas

Typing rules
General structure of a typing rule
MALE A, - T, A— Ag,..., A,
LART

The rewriting A < A’ allows for manipulating the logical context
according to the entailment relation (e.g., split conjunctions or duplicate
exponential resources)
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Example

Standard Refinement Typing

VAL REFINE
IAEM:T AR F{M/x}

AFM:{x:T|F}
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Example

Standard Refinement Typing

VAL REFINE
NAFM:T I AFF{M/x}

AFM:{x:T|F}

Affine Refinement Typing
We have to choose where to use affine resources:

VAL REFINE
AL EM:T I';AQI—F{M/X} A — Ay, Ay

AEM:{x:T|F}

Eg, M: T, AQBFM:{y:{x: T |A} | B}since A B— A B
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Algorithmic type-checking

Environment rewriting is highly non-deterministic and this hinders the
implementation of a type-checker:

@ the type-checker should incorporate logical entailment...

@ ... and distribute formulas among subderivations
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@ the type-checker should incorporate logical entailment...

@ ... and distribute formulas among subderivations

Algorithmic formulation

I A T replaced by 'y J; F
@ we remove the non-determinism associated to A
@ deterministic, syntax-directed construction of a proof obligation F
@ F is later discharged by an external theorem prover

@ if both steps succeed, the code is well-typed
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Algorithmic type-checking

Environment rewriting is highly non-deterministic and this hinders the
implementation of a type-checker:

@ the type-checker should incorporate logical entailment...

@ ... and distribute formulas among subderivations

Algorithmic formulation
I A T replaced by 'y J; F
@ we remove the non-determinism associated to A
deterministic, syntax-directed construction of a proof obligation F
F is later discharged by an external theorem prover

if both steps succeed, the code is well-typed

algorithmic type-checking is sound and complete
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Example

Affine Refinement Typing
We have to choose where to use affine resources:

VAL REFINE
AT EM:T r;AQI_F{M/X} A= A, Ay

AFEM:{x:T|F}
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Example

Affine Refinement Typing
We have to choose where to use affine resources:

VAL REFINE
AT EM:T F;Azl—F{M/x} A= A, Ay

AFM:{x:T|F}

Affine Refinement Typing

@ Values are partially annotated to make type-checking syntax-directed

@ The algorithmic typing rules collect the formulas required for typing,

which are then automatically discharged:

VAL REFINE
[Fag M T, F’

I Fag M{x:,|F} Ax: T | F} F'® F{M/x}
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Typing cryptographic libraries

seal : @ — Un Secret list{a * Un) unseal : Un — «

m:o
c:Un

c:Un

m.c

Symbolic cryptography
We prove properties in the symbolic setting, using standard sealing-based
cryptographic libraries developed for F7/F*
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Typing cryptographic libraries

seal : @ — Un Secret list{a * Un) unseal : Un — «

m:o

c:Un

c:Un

m.c

Symbolic cryptography
We prove properties in the symbolic setting, using standard sealing-based
cryptographic libraries developed for F7/F*

Key aspects
@ Communication and cryptographic libraries build on exponential types,
which do not carry any affine refinements (they are all serialized)

@ Consequently, we can just reuse standard typed cryptographic libraries
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Case study: EPMO (1/2)

An e-commerce protocol proposed by Guttman et al.l

enc((Cnc.g,p)ek(km))

< enc(sign((nc,muM.g,C.p).kjy) ek(kc))

<———enc((C,nc,nm,p),ek(kg))

—enc(sign((B,C,nc,ng,nm,p),kg).ek(kc))—=

——enc(sign((B,C,nc,ng,nm,p),kp).ek(km))—s

nc(sign((B,M,ng,nm),ky,).ek(kg))

'We consider here a simpler (safe) variant of the protocol

60
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Case study: EPMO (1/2)

An e-commerce protocol proposed by Guttman et al.l

B C M
enc((C,nc.g.p)ek(knm))

assume Yy.(Pay(y, p, M, nyy) —o Ship(M, g, C))

~<——enc(sign((nc,nm,M,g,C,p),ky, ) ek(kc))

<~——enc((C,nc,nm,p).ek(kg))
assume Vy.Pay(B, p,y, nm)
—enc(sign((B,C,nc,ng,nm,p) kg ).ek(ke))—
assert Ship(M, g, C)

——enc(sign((B,C,nc,ng,nm,p),kp).ek(km))—s

nc(sign((B,M,ng,nm),kp,).ek(ks))

!We consider here a simpler (safe) variant of the protocol
61/76



Case study: EPMO (1/2)

An e-commerce protocol proposed by Guttman et al.l

B C M
enc((C,nc.g.p)ek(knm))

assume Yy.(Pay(y, p, M, nyy) —o Ship(M, g, C))

~<——enc(sign((nc,nm,M,g,C,p),ky, ) ek(kc))

<~——enc((C,nc,nm,p).ek(kg))
assume Vy.Pay(B, p,y, nm)
—enc(sign((B,C,nc,ng,nm,p) kg ).ek(ke))—
assert Ship(M, g, C)

——enc(sign((B,C,nc,ng,nm,p),kp).ek(km))—s

nc(sign((B,M,ng,nm),kp,).ek(ks))

Challenges
@ the nonce nc is checked twice by C (steps 2 and 4)

@ the verification key types must convey structured formulas

"We consider here a simpler (safe) variant of the protocol
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Case study: EPMO (2/2)

Challenges
@ the nonce nc¢ is checked twice by C (steps 2 and 4)
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Case study: EPMO (2/2)

Challenges

@ the nonce nc¢ is checked twice by C (steps 2 and 4)

we cannot construe nc¢ as an affine value
solution: assume two predicates Nonce;(nc) and Nonces(nc)

@ the verification key types must convey structured formulas

if we had only affine values, we should look for an encoding (cf. F*)
but this is not a problem for our framework

Verification
© we enrich the code with suitable (refinement) types
© we introduce the necessary serializers
© we type-check the protocol
The proof obligation is dispatched by 11prover in less than 20 ms

(nevertheless, automated theorem provers for affine logic are far from
being optimal)
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Take-home message

Affine logic for security
o Affine logic elegantly captures security properties where the number
of actions matters (e.g., injective agreement)

o Affine security properties for distributed systems can be statically
enforced, modularly and efficiently
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cryptographic patterns for authorization
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Take-home message

Affine logic for security

o Affine logic elegantly captures security properties where the number
of actions matters (e.g., injective agreement)

o Affine security properties for distributed systems can be statically
enforced, modularly and efficiently

Under the hood...

@ We investigated a link between affine logic connectives and standard
cryptographic patterns for authorization

@ We designed a modular refinement type system for enforcing
resource-aware authorization policies in protocol implementations
@ We devised a sound and complete algorithmic variant

@ We showed the expressiveness of our framework by type-checking the
implementation of

a variant of the EPMO protocol
Kerberos
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Thank you for your attention!



