Difference between revisions of "Models"

From Popix
Jump to navigation Jump to search
 
(30 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
===''Covariates''===
 
===''Covariates''===
 
===''Levels of variability''===
 
===''Levels of variability''===
 +
 +
  
  
Line 16: Line 18:
 
===''Survival data''===
 
===''Survival data''===
 
===''Joint models''===
 
===''Joint models''===
 +
 +
  
 
==''Dynamical systems driven by ODEs''==
 
==''Dynamical systems driven by ODEs''==
Line 25: Line 29:
 
\begin{equation}
 
\begin{equation}
 
\label{ode1_model}
 
\label{ode1_model}
\operatorname{d}\!A = F(A(t))
+
\dot{A} = F(A(t))
 
\end{equation}
 
\end{equation}
  
where $\operatorname{d}\!A{}$ denotes the vector of derivatives of $A(t)$ with respect to $t$:
+
where $\dot{A}(t)$ denotes the vector of derivatives of $A(t)$ with respect to $t$:
 
\begin{equation}
 
\begin{equation}
 
\label{ode2_model}
 
\label{ode2_model}
 
\left\{
 
\left\{
 
\begin{array}{lll}
 
\begin{array}{lll}
   \operatorname{d}\!A{1} & = & F_1(A(t)) \\
+
   \dot{A}_1(t) & = & F_1(A(t)) \\
   \operatorname{d}\!A{2} & = & F_2(A(t)) \\
+
   \dot{A}_2(t) & = & F_2(A(t)) \\
 
   \vdots & \vdots & \vdots \\
 
   \vdots & \vdots & \vdots \\
   \operatorname{d}\!A{L} & = & F_L(A(t))
+
   \dot{A}_L(t) & = & F_L(A(t))
 
\end{array}
 
\end{array}
 
\right.
 
\right.
Line 42: Line 46:
  
 
Notations:
 
Notations:
\begin{itemize}
+
# let $A_0 = A(t_0)$ be the initial condition of the system defined at the initial time $t_0$,
\item let $A_0 = A(t_0)$ be the initial condition of the system defined at the initial time $t_0$,
+
let $A^{\star}$ be the solution of the system at equilibrium: $F(A^{\star}) =0$
\item let $\As$ be the solution of the system at equilibrium: $F(\As) =0$
+
 
\end{itemize}
+
 
 +
====''A basic model''====
  
\subsubsection{A basic model}
 
 
We assume here that there is no input:
 
We assume here that there is no input:
 
\begin{eqnarray*}
 
\begin{eqnarray*}
 
A(t_0) &= &A_0  \\
 
A(t_0) &= &A_0  \\
\operatorname{d}\!A{} &= &F(A(t)) \ , \ t \geq t_0
+
\dot{A}(t) &= &F(A(t)) \ , \ t \geq t_0
 
\end{eqnarray*}
 
\end{eqnarray*}
  
\noindent \underline{Example}:  A viral kinetic (VK) model.
 
  
\begin{minipage}{8cm}
+
{| align=center
  In this example, the data file contains the viral load:
+
  | <u>Example:</u>  A viral kinetic (VK) model.
\end{minipage}
+
 
 +
In this example, the data file contains the viral load:  
 +
 
  
  
{|
+
||
! align="left"| ID
+
      {|                                                          
! TIME
+
      ! align="left"| ID
! VL
+
      ! TIME
|-
+
      ! VL
|1
+
      |-  
| -5
+
      |1
|6.5
+
      | -5
|-
+
      |6.5
|1
+
      |-
| -2
+
      |1
|7.1
+
      | -2
|-
+
      |7.1
|1
+
      |-
|1
+
      |1
|6.3
+
      |1
|-
+
      |6.3
|1
+
      |-
|5
+
      |1
|4.2
+
      |5
|-
+
      |4.2
|1
+
      |-
|12
+
      |1
|2.1
+
      |12
|-
+
      |2.1
|1
+
      |-
|20
+
      |1
|0.9
+
      |20
|-
+
      |0.9
|$\vdots$
+
      |-
|$\vdots$
+
      |$\vdots$
|$\vdots$
+
      |$\vdots$
|}  
+
      |$\vdots$
 +
      |}
 +
    |}
 +
  
  
  
Consider a basic VK model with $A=(\nitc,\itc,\vl)$ where $\nitc$ is the number of non infected target cells, $\itc$ the number of infected target cells and $\vl$ the number of virus.
+
Consider a basic VK model with $A=(\it{N},\it{I},\it{V})$ where $N$ is the number of non infected target cells, $C$ the number of infected target cells and $V$ the number of virus.
  
 
After infection  and before treatment, the  dynamics of the system is described by this ODE system:
 
After infection  and before treatment, the  dynamics of the system is described by this ODE system:
Line 104: Line 112:
 
\left\{
 
\left\{
 
\begin{array}{lll}
 
\begin{array}{lll}
   \dA{\nitc}{} & = & s - \beta \, \nitc(t) \, \vl(t) - d\,\nitc(t)  \\
+
   \dot{N}(t) & = & s - \beta \it{N}(t) \it{V}(t) - d\it{N}(t)  \\
   \dA{\itc}{} & = & \beta \, \nitc(t) \, \vl(t) - \delta \, \itc(t) \\
+
   \dot{I}(t) & = & \beta \it{N}(t)\it{V}(t) - \delta \it{I}(t) \\
   \dA{\vl}{} & = & p \, \itc(t) - c \, \vl(t)
+
   \dot{V}(t) & = & p \it{I}(t) - c \it{V}(t)
 
\end{array}
 
\end{array}
 
\right.
 
\right.
 
\end{equation}
 
\end{equation}
The  equilibrium state of this system is $\As = (\nitc^\star , \itc^\star , \vl^\star)$.
+
The  equilibrium state of this system is $\A^{\star} = $(N^^{\star} , \I^{\star} , \V^{\star})$.
 
where
 
where
 
\begin{equation}
 
\begin{equation}
Line 292: Line 300:
 
\end{verbatim}
 
\end{verbatim}
 
\end{minipage}
 
\end{minipage}
 
 
 
  
 
==='''Dynamical systems with source terms'''===
 
==='''Dynamical systems with source terms'''===
  
  
==''Extensions'''==
+
==''Extensions''==
 
==='''Mixture models'''===
 
==='''Mixture models'''===
 
==='''Hidden Markov models'''===
 
==='''Hidden Markov models'''===

Latest revision as of 18:09, 21 January 2013

Introduction

Modelling the individual parameters

Introduction

Covariates

Levels of variability

Modelling the observations

Introduction

Continuous data

Categorical data

Count data

Survival data

Joint models

Dynamical systems driven by ODEs

Autonomous dynamical systems

Consider a time-varying system $A(t)=(A_1(t),A_2(t),\ldots A_J(t))$ defined by a system of Ordinary Differential Equations (ODE)

\begin{equation} \label{ode1_model} \dot{A} = F(A(t)) \end{equation}

where $\dot{A}(t)$ denotes the vector of derivatives of $A(t)$ with respect to $t$: \begin{equation} \label{ode2_model} \left\{ \begin{array}{lll} \dot{A}_1(t) & = & F_1(A(t)) \\ \dot{A}_2(t) & = & F_2(A(t)) \\ \vdots & \vdots & \vdots \\ \dot{A}_L(t) & = & F_L(A(t)) \end{array} \right. \end{equation}

Notations:

  1. let $A_0 = A(t_0)$ be the initial condition of the system defined at the initial time $t_0$,
  2. let $A^{\star}$ be the solution of the system at equilibrium: $F(A^{\star}) =0$


A basic model

We assume here that there is no input: \begin{eqnarray*} A(t_0) &= &A_0 \\ \dot{A}(t) &= &F(A(t)) \ , \ t \geq t_0 \end{eqnarray*}


Example: A viral kinetic (VK) model.

In this example, the data file contains the viral load:


ID TIME VL
1 -5 6.5
1 -2 7.1
1 1 6.3
1 5 4.2
1 12 2.1
1 20 0.9
$\vdots$ $\vdots$ $\vdots$



Consider a basic VK model with $A=(\it{N},\it{I},\it{V})$ where $N$ is the number of non infected target cells, $C$ the number of infected target cells and $V$ the number of virus.

After infection and before treatment, the dynamics of the system is described by this ODE system: \begin{equation} \label{vk1} \left\{ \begin{array}{lll} \dot{N}(t) & = & s - \beta \it{N}(t) \it{V}(t) - d\it{N}(t) \\ \dot{I}(t) & = & \beta \it{N}(t)\it{V}(t) - \delta \it{I}(t) \\ \dot{V}(t) & = & p \it{I}(t) - c \it{V}(t) \end{array} \right. \end{equation} The equilibrium state of this system is $\A^{\star} = $(N^^{\star} , \I^{\star} , \V^{\star})$. where \begin{equation} \label{eq1} \nitc^\star = \frac{\delta \, c}{ \beta \, p} \quad ; \quad \itc^\star = \frac{s - d\,\nitc^\star}{ \delta} \quad ; \quad \vl^\star = \frac{ p \, \itc^\star }{c}. \end{equation} Assume that the system has reached the equilibrium state $\As$ when the treatment starts at time $t_0=0$. The treatment inhibits the infection of the target cells and blocks the production of virus. The dynamics of the new system is described with this new ODE system: \begin{equation} \label{vk2} \left\{ \begin{array}{lll} \dA{\nitc}{} & = & s - \beta(1-\eta) \, \nitc(t) \, \vl(t) - d\,\nitc(t) \\ \dA{\itc}{} & = & \beta(1-\eta) \, \nitc(t) \, \vl(t) - \delta \, \itc(t) \\ \dA{\vl}{} & = & p(1-\varepsilon) \, \itc(t) - c \, \vl(t) \end{array} \right. \end{equation} where $0<\varepsilon <1$ and $0 < \eta < 1$. The initial condition and the dynamical system are described in the MDL (in a block \verb"$EQUATION" with MLXTRAN):

\hspace*{4cm} \begin{minipage}[b]{10cm} \begin{verbatim} '"`UNIQ-MathJax23-QINU`"'\As'"`UNIQ-MathJax24-QINU`"'t<0'"`UNIQ-MathJax25-QINU`"'t_0< t_1< ...<t_K'"`UNIQ-MathJax26-QINU`"'F^{(1)}, F^{(2)},\ldots,F^{(K)}'"`UNIQ-MathJax27-QINU`"'T_{Start1}'"`UNIQ-MathJax28-QINU`"'T_{Start2}'"`UNIQ-MathJax29-QINU`"'T_{Stop}'"`UNIQ-MathJax30-QINU`"'(T_{Start1},T_{Start2},T_{Stop})'"`UNIQ-MathJax31-QINU`"'T_{Start1}=0'"`UNIQ-MathJax32-QINU`"'T_{Start2}=20'"`UNIQ-MathJax33-QINU`"'T_{Stop}=200'"`UNIQ-MathJax34-QINU`"'T_{Start1}'"`UNIQ-MathJax35-QINU`"'A(t) = \As'"`UNIQ-MathJax36-QINU`"'\As'"`UNIQ-MathJax37-QINU`"'T_{Start1}'"`UNIQ-MathJax38-QINU`"'T_{Start2}'"`UNIQ-MathJax39-QINU`"'T_{Start2}'"`UNIQ-MathJax40-QINU`"'T_{Stop}'"`UNIQ-MathJax41-QINU`"'T_{Stop}'"`UNIQ-MathJax42-QINU`"'EQUATION" and using the statement \verb"SWITCH" with MLXTRAN). We only show the blocks \verb"'"`UNIQ-MathJax43-QINU`"'EQUATION" of the code: \hspace*{2cm} \begin{minipage}[b]{10cm} \begin{verbatim} '"`UNIQ-MathJax44-QINU`"'EQUATION SWITCH CASE T < T_Start1 N = delta*c/(beta*p); I = (s-d*N)/delta V = p*I/c CASE T_Start1 < T < T_Start2 DDT_N = s - beta*N*V - d*N DDT_I = beta*N*V - delta*I DDT_V = p*(1-epsilon)*I - c*V CASE T_Start2 < T < T_Stop DDT_N = s - beta*(1-eta)*N*V - d*N DDT_I = beta*(1-eta)*N*V - delta*I DDT_V = p*(1-epsilon)*I - c*V CASE T > T_Stop DDT_N = s - beta*(1-eta*exp(-k1*(T-T_Stop)))*N*V - d*N DDT_I = beta*(1-eta*exp(-k1*(T-T_Stop)))*N*V - delta*I DDT_V = p*(1-epsilon*exp(-k2*(T-T_Stop)))*I - c*V END \end{verbatim} \end{minipage}

\noindent{\bf Remark 1:} Here, \verb"EVENT" is a reserved variable name. Then, the information in the column \verb"EVENT" is recognized as a succession of events. Furthermore, the times of the events \verb"Start1", \verb"Start2" and \verb"Stop" are automatically created as \verb"T_Start1", \verb"T_Start2" and \verb"T_Stop".

\noindent{\bf Remark 2:} In this particular example, the dynamical system is described by parameters $\beta$ and $p$ whose definition switches. Then, the same model could be encoded as follows:

\hspace*{2cm} \begin{minipage}[b]{10cm} \begin{verbatim} $EQUATION T_0 = T_Start1 N_0 = delta*c/(beta*p); I_0 = (s-d*N)/delta V_0 = p*I/c SWITCH CASE T_Start1 < T < T_Start2 be = beta pe = p*(1-epsilon) CASE T_Start2 < T < T_Stop be = beta*(1-eta) pe = p*(1-epsilon) CASE T > T_Stop be = beta*(1-eta*exp(-k1*(T-T_Stop))) pe = p*(1-epsilon*exp(-k2*(T-T_Stop))) END DDT_N = s - be*N*V - d*N DDT_I = be*N*V - delta*I DDT_V = pe*I - c*V \end{verbatim} \end{minipage}

Dynamical systems with source terms

Extensions

Mixture models

Hidden Markov models

SDE based models

Modelling the population parameters

Modelling the covariates