Révision datée du 27 juin 2019 à 22:37 par Marmot (discussion | contributions) (Formulas)

Rescom TP instructions

De MARMOTE

Instuctions for the Lab on Markov chain modeling and MDP analysis, at the RESCOM2019 summer school

Objective

The goals of the Lab session is

  • program the model of a discrete-time queue with impatience, batch size and finite capacity, using the marmoteCore library;
  • program the same model with a control of admission in service, with the marmoteMDP library;
  • compute the optimal service policy in this queue.

Steps

Preparation

The first step is to have the library installed on your computer. Two possibilities:

  • using a virtual machine with virtualbox
  • using the compiled library (linux only)

The instructions with virtualbox are then:

  • install the virtualbox software from its web site
  • launch virtualbox
  • click on "Machine > Add"
  • enter the location of the virtual machine that has been downloaded
  • select the VM (Rescom2019_TP) in the right-hand pane and click on "Start"
  • log in with username/password pierre/Rescom2019*
  • you should see a desktop with two folders: TP_Marmote and TP_MDP

Instructions for building Markov Chains

Testing the example provided

  • Click on the TP_Marmote folder
  • click on the file "example1.cpp" (or right-click then select "geany")
  • a command-line terminal should appear at the bottom. Type

./example1

Example 1: construction of a discrete-time Markov chain on a 3-state space.

  • the program takes as arguments:
    • n, a number of steps
    • p1 p2 p3, three probabilities summing up to 1, representing the initial distribution
  • it outputs
    • the probability transition matrix
    • a trajectory x[0], x[1], ... x[n]
  • run the example with values, e.g.

./example1 4 0.2 0.3 0.5

  • use the editor to modify the code example1.cpp, in order to make state 2 absorbing
  • compile by clicking "Construire > Make"
  • execute again
  • modify further the code to make it compute the value of the distribution after n steps:

 Distribution* trDis = c1->TransientDistributionDT( 0, n );
 trDis->Write( stdout, STANDARD_PRINT_MODE );


  • compile and execute

Developing a new model

  • download/copy the skeleton of the program from here.
  • copy/rename it as main.cpp (overwite the present one)

The file contains:

  • the "include" instructions necessary
  • a "combinations" and "binomial" useful for computing some probabilities
  • the template of a "MakeGenerator" function returning a matrix (type SparseMatrix)
  • a main() function.
  • modify the code of MakeGenerator( batchDistrib, batchSize, bufferSize ) to have it create the transition matrix of the queue with
    • arrivals in batches distributed according to batchDistrib
    • one server serving batches of size batchSize
    • buffer + server capacity = bufferSize

The object DiscreteDistribution:

  • represents a discrete distribution on some finite set of values
  • is created as

new DiscreteDistribution( n, values, probas );

where n is the number of values, and the two other parameters are arrays of double.
  • has member functions
    • nb_vals() for getting the number of values
    • batchDistrib->values() for getting the array of values
    • batchDistrib->probas() for getting the array of probabilities
    • Mean() for computing its average
    • Write( stdout, STANDARD_PRINT_MODE ) for displaying it on the terminal.
  • in the main(), create a DiscreteDistribution object for the distribution:
    • with values 0, 1, 2, 3, 4,
    • with probabilities 1/2, 1/4, 1/8, 1/16, 1/16
  • adapt the code from example1.cpp to create a SparseMatrix object with MakeGenerator, then a Markov chain
  • simulate the chain for some time
  • compute its stationary distribution with the MarkovChain method:

Distribution* StationaryDistributionDT();

  • then write it to the terminal.

Instructions for building a MDP model

  • download/copy the skeleton of the program from here.
  • adapt the code of the file MDP_jouet.cpp in order to:
    • create in the object P1 the transition matrix of a queue with batch service (reuse the code of the previous exercise)
    • create in the object P2 the transition matrix of the same queue, but without any service
    • create in the object R1 the matrix of rewards/costs for each pair (state,action)
  • create the discountedMDP object from these elements
  • solve the MDP problem with the discountedMDP method

solutionMDP* valueIteration( epsilon, maxIter )

where epsilon is some precision parameter and maxIter the maximum number of iterations
  • write the result to the terminal with the writeSolution() method
  • do the same with the discountedMDP method policyIterationModified( epsilon, maxIter, value, period )
    where value = 0.01 and period = 100
  • compile and execute

Formulas

<math xmlns="http://www.w3.org/1998/Math/MathML"> <mtable class="m-displaymath" displaystyle="true" style="display: block; margin-top: 1.0em; margin-bottom: 2.0em"> <mtr> <mtd> <mspace width="6.0em" /> </mtd> <mtd columnalign="left"> <mi>c</mi> <mrow> <mo form="prefix">(</mo> <mi>x</mi> <mo>,</mo> <mi>q</mi> <mo form="postfix">)</mo> </mrow> <mi> </mi> <mo>=</mo> <mi> </mi> <mi>q</mi> <mspace width="0.167em" /> <msub> <mi>c</mi> <mi>B</mi> </msub> <mspace width="0.167em" /> <mo>+</mo> <mspace width="0.167em" /> <mrow> <mo form="prefix">(</mo> <msub> <mi>c</mi> <mi>L</mi> </msub> <mspace width="0.167em" /> <mi>α</mi> <mo>+</mo> <msub> <mi>c</mi> <mi>H</mi> </msub> <mo form="postfix">)</mo> </mrow> <mspace width="0.167em" /> <msup> <mrow> <mo form="prefix">(</mo> <mi>x</mi> <mo>-</mo> <mi>q</mi> <mi>B</mi> <mo form="postfix">)</mo> </mrow> <mo>+</mo> </msup> <mi> </mi> <mo>=</mo> <mi> </mi> <mi>q</mi> <mspace width="0.167em" /> <msub> <mi>c</mi> <mi>B</mi> </msub> <mspace width="0.167em" /> <mo>+</mo> <msub> <mi>c</mi> <mi>Q</mi> </msub> <mspace width="0.167em" /> <msup> <mrow> <mo form="prefix">(</mo> <mi>x</mi> <mo>-</mo> <mi>q</mi> <mi>B</mi> <mo form="postfix">)</mo> </mrow> <mo>+</mo> </msup> <mi> </mi> <mo>,</mo> </mtd> </mtr> </mtable> </math> with <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub> <mi>c</mi> <mi>Q</mi> </msub> <mo>=</mo> <msub> <mi>c</mi> <mi>L</mi> </msub> <mspace width="0.167em" /> <mi>α</mi> <mo>+</mo> <msub> <mi>c</mi> <mi>H</mi> </msub> </mrow> </math> .