Rescom TP instructions : Différence entre versions

De MARMOTE
(Developing a new model)
(Developing a new model)
Ligne 65 : Ligne 65 :
  
 
* download/copy the skeleton of the program from [http://www-desir.lip6.fr/~hyon/Marmote/MachineVirtuelle/tp_skeleton.cpp here].
 
* download/copy the skeleton of the program from [http://www-desir.lip6.fr/~hyon/Marmote/MachineVirtuelle/tp_skeleton.cpp here].
 +
* copy/rename it as <span style="font:courier">main.cpp</span> (overwite the present one)
 
<blockquote style="color:purple">
 
<blockquote style="color:purple">
 
The file contains:
 
The file contains:
Ligne 71 : Ligne 72 :
 
* the template of a "MakeGenerator" function returning a matrix (type SparseMatrix)
 
* the template of a "MakeGenerator" function returning a matrix (type SparseMatrix)
 
* a main() function.
 
* a main() function.
 +
</blockquote>
 +
* modify the code of MakeGenerator( batchDistrib, batchSize, bufferSize ) to have it create the transition matrix of the queue with
 +
** arrivals in batches distributed according to batchDistrib
 +
** one server serving batches of size batchSize
 +
** buffer + server capacity = bufferSize
 +
<blockquote style="color:purple">
 +
The object DiscreteDistribution:
 +
* represents a discrete distribution on some finite set of values
 +
* is created as
 +
<code>
 +
new DiscreteDistribution( n, values, probas );
 +
</code>
 +
** where n is the number of values, and the two other parameters are arrays of double.
 +
* has member functions
 +
** nb_vals() for getting the number of values
 +
** batchDistrib->values() for getting the array of values
 +
** batchDistrib->probas() for getting the array of probabilities
 +
** Write( stdout, STANDARD_PRINT_MODE ) for displaying it on the terminal.
 +
 
</blockquote>
 
</blockquote>

Version du 27 juin 2019 à 21:50

Instuctions for the Lab on Markov chain modeling and MDP analysis, at the RESCOM2019 summer school

Objective

The goals of the Lab session is

  • program the model of a discrete-time queue with impatience, batch size and finite capacity, using the marmoteCore library;
  • program the same model with a control of admission in service, with the marmoteMDP library;
  • compute the optimal service policy in this queue.

Steps

Preparation

The first step is to have the library installed on your computer. Two possibilities:

  • using a virtual machine with virtualbox
  • using the compiled library (linux only)

The instructions with virtualbox are then:

  • install the virtualbox software from its web site
  • launch virtualbox
  • click on "Machine > Add"
  • enter the location of the virtual machine that has been downloaded
  • select the VM (Rescom2019_TP) in the right-hand pane and click on "Start"
  • log in with username/password pierre/Rescom2019*
  • you should see a desktop with two folders: TP_Marmote and TP_MDP

Instructions for building Markov Chains

Testing the example provided

  • Click on the TP_Marmote folder
  • click on the file "example1.cpp" (or right-click then select "geany")
  • a command-line terminal should appear at the bottom. Type

./example1

Example 1: construction of a discrete-time Markov chain on a 3-state space.

  • the program takes as arguments:
    • n, a number of steps
    • p1 p2 p3, three probabilities summing up to 1, representing the initial distribution
  • it outputs
    • the probability transition matrix
    • a trajectory x[0], x[1], ... x[n]
  • run the example with values, e.g.

./example1 4 0.2 0.3 0.5

  • use the editor to modify the code example1.cpp, in order to make state 2 absorbing
  • compile by clicking "Construire > Make"
  • execute again
  • modify further the code to make it compute the value of the distribution after n steps:

 Distribution* trDis = c1->TransientDistributionDT( 0, n );
 trDis->Write( stdout, STANDARD_PRINT_MODE );

  • compile and execute

Developing a new model

  • download/copy the skeleton of the program from here.
  • copy/rename it as main.cpp (overwite the present one)

The file contains:

  • the "include" instructions necessary
  • a "combinations" and "binomial" useful for computing some probabilities
  • the template of a "MakeGenerator" function returning a matrix (type SparseMatrix)
  • a main() function.
  • modify the code of MakeGenerator( batchDistrib, batchSize, bufferSize ) to have it create the transition matrix of the queue with
    • arrivals in batches distributed according to batchDistrib
    • one server serving batches of size batchSize
    • buffer + server capacity = bufferSize

The object DiscreteDistribution:

  • represents a discrete distribution on some finite set of values
  • is created as

new DiscreteDistribution( n, values, probas );

    • where n is the number of values, and the two other parameters are arrays of double.
  • has member functions
    • nb_vals() for getting the number of values
    • batchDistrib->values() for getting the array of values
    • batchDistrib->probas() for getting the array of probabilities
    • Write( stdout, STANDARD_PRINT_MODE ) for displaying it on the terminal.