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Distributed Optimization

Distributed Optimization

Consider a function F : {0,A}N → R, to be optimized in a distributed way.
N is the number of dimensions (agents)
{0,A} is the action space of each agent (w.n.l.g.).

State x = (x1, x2, . . . , xN) is a global optimum if F (x) = max
y∈{0,A}N

F (y).

x is a local optimum if ∀i , F (x) = max
α∈{0,A}

F (α, x−i ).

Assumption (A)

We assume that for all i and for all x ,

argmax
α∈{0,A}

F (α, x−i ) is unique.
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Distributed Optimization

Example in dimension N = 2

4
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Greedy Algorithm

Asynchronous Greedy Algorithm (AGA)

Asynchronous Greedy Algorithm (AGA)
1 Pick one agent i (with a given distribution over all agents)
2 Agent i chooses the action that maximizes F
3 Go back to 1.
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Greedy Algorithm

Example in dimension 2 (with 2 agents)
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Greedy Algorithm

Convergence to Local Optima

Theorem
Algorithm AGA converges in finite time a.s. to a local optimum of F .

Proof. Each time one coordinate is changed, the value increases (so it
must converge to a local optimum).
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Randomized Algorithm

Randomized Algorithm

The problem with the Greedy Algorithm is that convergence to local
optima may not be good enough.

Here we let agents act simultaneously and to give a chance to the agents
to exit from a local optimum, we randomize their choices. The choice
Qi (x) of agent i under state x is:

P(Qi (x) = a) =
eθF (a,x−i )∑
b e

θF (b,x−i )

Randomized Algorithm (RA)
1 Pick one set S of players (with a given distribution ρ).
2 Each agent i in S chooses action Qi (x)

3 Go back to 1.
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Randomized Algorithm

Randomized Algorithm (II)

The evolution of the state x is Markovian. The transition matrix has two
parts: first choose the revision set S , then choose the new action for each
agent in S .

The (irreducible) transition matrix P is

Px ,y =
∑

S⊇Diff(x ,y)
ρ(S)

∏
i∈S

eθF (yi ,x−i )∑
α∈A eθF (α,x−i )

.

Let π(θ) be the (unique) stationary measure of P .
A state x is stochastically stable if lim

θ→∞
πx(θ) > 0

When θ →∞, (RA) → (GA),
however πx(θ) 6→ πx(∞), (the stable states of (GA)), but selects a subset.
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Randomized Algorithm

Stochastically stable states for (RA)
Theorem (Caracterization of stochastic stable states)

State x is stochastically stable if and only if the order of its minimal in-tree
is the smallest, among all in-trees.

proof. Let us use the caracterization of stochastically stable states.
ε = e−θ

Px ,y =
∑

S⊇Diff(x ,y)
ρ(S)

∏
k∈S

ε−F (yk ,x−k )∑
α∈A(k) ε

−F (α,x−k )
.

which can be written Px ,y = cx ,yε
qx,y + o(εqx,y ),

qx ,y
def
= min

S⊇Diff(x ,y)∩S(ρ)

(∑
k∈S

(
max
α∈Ak

F (α, x−k)− F (yk , x−k)
))

.
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Randomized Algorithm

Stochastically stable states for (RA) (II)

By using the Markov chain tree theorem, the order qx of πx w.r.t. ε is

qx
def
= min

T∈Tx

∑
(y ,z)∈T

qy ,z

Therefore, the only components in π that do not go to 0 when ε goes to 0
are those with the smallest order:

( lim
θ→∞

πx > 0)⇔ (qx = min
y∈A

qy ). (1)
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Randomized Algorithm

Convergence to Local Optima
Theorem (Convergence to global optima for asynchronous revisions)

If the revision family is separable, then the stochastically stable states are
local optima.

proof. qx ,y > 0. qx ,y = 0⇔ ∃S ∈ Diff(x , y) ∩ S(ρ) s.t. y = BRS(x).
If x is not a local optimum, then separability implies ∃(Sn)06n<H of sets of
players in S(ρ) and states (Xn)06n6H such that

X0 = x

Xn+1 = BRSn(Xn), ∀ 0 6 n < H,

and XH is a local optimum.
This constructs a path with order 0 from x to XH . Let T ∗x be a tree with
minimal order, routed in x . From T ∗x , construct a tree routed in XH by
adding the path from x to XH and removing the arc in T ∗x starting in XH .
This arc’s order > 0. The new tree’s order is strictly smaller that T ∗x , so x
cannot achieve the minimum in (1).
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Randomized Algorithm

Convergence to Global Optima

Theorem (Convergence to global optima for asynchronous revisions)

If the revision family is only made of all the singletons, then the only
stochastically stable states are the global optima.

proof. Under uniform selction, the Markov chain (Xn) is reversible and the
stationary probability is explicitly known: for all profiles x ,

πx ∝ eθF (x).

When θ →∞, the total stationary probability of the profiles with optimal
potential will go to one.
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Examples

Example 1: 2 agents, no convergence

F =

1\2 a b

a 1 0.5
b 0 1

Revision set: {1, 2}

π(((a, a), (a, b), (b, a), (b, b))→ (1/4, 1/4, 1/4, 1/4).
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Examples

Example 2: 3 agents, convergence to LO

(2)

(1)

0

0

0

9

0
0

0

(−12)

(−11) (−1)

(−10)

(0)(3)

Revision set: {1}, {2}, {3}, {1, 2, 3}.

Unique stable state: (1, 1, 1) (not global optimum).
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Examples

Examples 3: 2 agents, convergence to LO

F =

1\2 a b c

a 11 0 5
b 5 10 8

Separable revision set: {2}, {1, 2}.

Unique stable state: (b, b), not global optimum.

Bruno Gaujal (Inria) Perturbed Markov Chains, Application to Distributed OptimizationMontbonnot 15 / 19



Examples

Examples 3: 2 agents, convergence to LO

F =

1\2 a b c

a 11 0 5
b 5 10 8

Separable revision set: {2}, {1, 2}.

Unique stable state: (b, b), not global optimum.

Bruno Gaujal (Inria) Perturbed Markov Chains, Application to Distributed OptimizationMontbonnot 15 / 19



Examples

Example 4: 2 agents, no convergence

F =

1\2 a b

a 1 1
b 1 0

Revision set {1, }, {2}, {1, 2}.

π((a, a), (a, b), (b, a), (b, b))→ (36/79, 20/79, 20/79, 3/79)
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Separability

Separable Families

Let R be a family of sets and consider the following elimination process:

As long as there is a singleton (say {k}) in R, remove k from all sets in R.

R is separable if the elimination process reduces R to the empty set.

Example:
R1 = {1}, {1, 2, 3}, {2, 4}, {1, 4} is separable
but
R2 = {1}, {1, 2, 3}, {2, 4}, {3, 4} is not separable

R3 = all the sets obtained when each agent i decides to play with
probability pi is separable (and fully distributed).
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Separability

Separability and Convergence to Local Optima

Theorem
The algorithm GA converges to a local optimum for all functions F
satisfying (A) if and only if the revision set is separable.

Proof.
1) By contradiction.
If R is separable, and GA does not converge to a local optimum, let x be
the state with maximal value visited by GA.

From x , let us select agents in the order of the elimination for separability
(this happens with a positive probability).
The value increases (impossible) or x is a local optimum (impossible).
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Separability

Proof (continued)

2) By construction.
Assume GA always converges to a local optimum under R.

Actions of each agent: {0, . . . ,A} where p = A+ 1 is a prime number > N.
We want to minimize F (x) =

∑
i

xi mod p.

Its optimal value is 0.
Assume agent i is selected at the next round (maybe with many others) at
state x with value k = F (x).
Its best action is (xi − k) mod p.
If m players play simultaneously, the new state has value (1−m)k mod p.
Since p is prime, we can only reach F = 0 when m = 1: R must contain a
singleton.
The rest holds by induction on N.
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