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Motivation and Outline

• Analyze the performance of a network under general traffics derived
from real traces

• Markov chains with huge state spaces

• Computation of the steady-state distribution is very difficult and often
impossible

• Apply the stochastic bounding method for network performance
analysis under histogram-based traffic
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• Histogram-based approach because of measurements

• Supposed to be more precise than typical assumptions about the
arrivals and services processes.

• Stochastic bound theory to reduce the size of the distribution

• Stochastic bound : a bound of the exact distribution

• It implies Bounds on performance measures which are non decreasing
rewards

• Better than a previous method (HBSP defined by Hernandez-Orallo
and his colleagues) which only provides approximation.

• Control of the size of the distribution

• Control of the complexity and Trade-off between accuracy and
complexity
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Traffic trace, Example
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Figure 1: MAWI traffic trace corresponds to a 1-hour IP traffic, 9th of
January 2007 between noon and 1PM
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First Step

• Deriving a discrete distribution from the trace

• Main Assumption : Stationarity of the process

• Sampling Period (Here T = 40 ms, to be consistent with previous
works by Hernandez-Orallo)

• Future Work : Markov Modulated Arrivals
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Illustration on MAWI
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Figure 2: MAWI traffic trace (left), Histogram representation (right) The
number of bins is 80511
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Complexity Issues

• The size of the distribution of the arrival process (here, 80511) has a
direct influence on the size of the Markov chain modeling the queue.

• Discrete Time Queues with iid batch arrivals (derived from the traces)
and batch services with iid distribution

• Slot time : the sampling period. Thus we may have several services
(i.e. the sampling period is not equal to a service time)

• In [EPEW2013], we have considered a model where the service
capacity is constant.

• Here we generalized to batch services with iid distribution as a step to
represent classes of packets with priority.

• Networks are analyzed by decomposition assuming independence of the
queues (approximation)
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Model of a Discrete Time Queue with finite buffer

• Arrival First

• Population at time n in the queue:

Xn+1 = min(B, (Xn + A − S)+) (1)

• where A is the size of the batch of arrival,

• S is the size of the batch of services

• and B is the buffer size

• Independence implies Markov Chain.
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Principe

Figure 3: Analysis of a Queue, H1 and H2 are known, H3, H4 and H5 are
numerically computed.
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Stochastic Bound and Complexity Issues

• Stochastically monotone. Intuition: If we consider the same
distribution for the services and we stochastically increase the arrivals,
we stochastically increase the distributions H3, H4 and H5.

• Based on the stochastic ordering ≤st of distributions.

• Key Idea: replace the distribution of arrivals with N bins by another
one with less bins (say K << N) and with is stochastically larger or
lower.

• Two Methods to find such a : a linear algorithm proposed by Tancrez
and Semal and the algorithm we have presented in [WODES12] which
provide the most accurate distribution according to a non negative
reward (with a larger complexity, based on dynamic programming).

• HBSP: builds an approximation of the distribution rather than a
bound.
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A Brief Introduction to Stochastic Ordering

• G = {1, 2, . . . , n} a finite state space, X, Y : discrete distributions over
G, pX(i) =prob(X = i) and pY (i) =prob(Y = i) for i ∈ G.

• Definition of ≤st order:
X ≤st Y iff

∑n
k=i pX(k) ≤

∑n
k=i pY (k), ∀i.

• Comparison of non decreasing rewards:

X ≤st Y ⇐⇒ E[f(X)] ≤ E[f(Y )]

for all non decreasing functions f , whenever expectations exist.
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Figure 4: G = {1, 2, . . . , 7}, pX = [0.1, 0.2, 0.1, 0.2, 0.05, 0.1, 0.25] and
pY = [0, 0.25, 0.05, 0.1, 0.15, 0.15, 0.3].
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Theoretical Result

• Theorem: The finite queue with batch arrivals and batch services is
stochastically monotone under the Tail Drop per unit assumption.

• Thus, if we consider two distributions H l
1 and Hu

1 on K bins such that
H l

1 ≤st H1 ≤st Hu
1 , then we obtain:

– H l
3 ≤st H3 ≤st Hu

3

– H l
4 ≤st H4 ≤st Hu

4

– H l
5 ≤st H5 ≤st Hu

5

– We also obtain upper and lower stochastic bounds for the
distribution of the losses.

• Use K << N . Typically K = 100 or 500 and N = 80511.
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Computing Population Distribution, H3

• We have to solve the steady-state distribution of the chain.

• Easy when the size is small.

• A new algorithm based on the convolution of distributions (Hernandez)

• with some improvements to take into account that the system is
stochastically monotone

• Provides a proof of convergence.
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Departure Process H5

• H3 is the steady-state distribution just before the arrival instants. It is
the distribution of the state seen by a batch of arrivals. The arrivals
modify this distribution, adding a new group of data units represented
by distribution (H1). after arrivals, we observe a buffer length
distributed with Hq:

Hq = H3 ⊗ H1 (2)

• The departure histogram H5 is defined on S such that
S = {k | ∀ i ∈ EHq and ∀ j ∈ EH2 , k = min(i, j)} and computed from
Hq as follows

H5(w) =
∑

i∈EHq

∑
j∈EH2

Hq(i) H2(j)1{min(i, j)=w}, ∀w ∈ S (3)

• An easy numerical computation
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Computing Response Time Distribution, H4

• for FIFO queues

• We compute upper and lower bounds for H4 because the data units
arriving in the same time slot will not necessarily experienced the same
delay.

• Algorithms are presented in the proceedings.

• Other techniques to compute bounds (not presented here) for queues
with a work conserving discipline.
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Losses

• HL distribution of the number of data units lost at the entrance of a
finite queue with a Tail Drop policy and an Arrival First assumption

• We first compute Hn = H3 ⊗ H1 ⊗ (−H2)

• The distribution of losses under the Tail Drop policy is: HL(k − B) = Hn(k) k > B

HL(0) =
∑

k≤B Hn(k)
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Examples on MAWI trace and a single queue
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Figure 5: Blocking Probability (left), Mean buffer occupancy (right)
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Number of classes vs Accuracy: QoS parameters
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Figure 6: Cumulative probability (cdf) of buffer occupancy under MAWI
traffic trace for 20 bins or 100 bins
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Conclusion

• Some Active Queue Management models will be added in the method
(proof of monotony)

• Add End to End Bounds for the delay

• Consider more complex arrival processes (for instance modulated by a
Markov chain)

• Consider several classes of customers with priority for the resource or
fair queueing.

• Not limited to networks, may be used with any large measurements
data.
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