Transition probabilities with service

The transition probabilities for the queue with:

- batch arrivals with probabilities $a_{k}=\mathbb{P}\{A=k\}$
- batch services of size B
- finite capacity K

The process $\left\{R_{n}\right\}$ is that of the number of customers in the queue at slot n after the events

- service completions
- admitting waiting customers in service
- departure of impatient customers
- arrival of new customers
in this order.

Transition probabilities with service

The evolution equation is:

$$
R_{n+1}=S\left(\left[R_{n}-B\right]^{+}\right)+A_{n}
$$

where $S(k)$ has a Binomial distribution with parameters k and $1-\alpha$.
For $i \leq B$ and $0 \leq j<K$,

$$
P_{i j}=a_{j} .
$$

For $i \leq B$ and $j=K$,

$$
P_{i j}=\sum_{j=K+1}^{\infty} a_{j} .
$$

For $i \geq B$ and $i-B \leq j<K$

$$
P_{i j}=\sum_{z=0}^{j} a_{z}\binom{i-B}{j-z} \alpha^{i-B-(j-z)}(1-\alpha)^{j-z}
$$

For $i \geq B$ and $j=K$

$$
P_{i j}=\sum_{z=0}^{j} a_{z} \sum_{\ell=K}^{\infty}\binom{i-B}{\ell-z} \alpha^{i-B-(\ell-z)}(1-\alpha)^{\ell-z} .
$$

Cost formulas

For each $0 \leq x \leq K$ and $q \in\{0,1\}$,

$$
\begin{aligned}
c(x, q) & =q c_{B}+\left(c_{L} \alpha+c_{H}\right)(x-q B)^{+} \\
& =q c_{B}+c_{Q}(x-q B)^{+},
\end{aligned}
$$

with $c_{Q}=c_{L} \alpha+c_{H}$.

Transition probabilities without service

When there is no service, the evolution equation is:

$$
R_{n+1}=S\left(R_{n}\right)+A_{n}
$$

where $S(k)$ has a Binomial distribution with parameters k and $1-\alpha$.
For $i=0$ and $0 \leq j<K$,

$$
P_{i j}=a_{j} .
$$

For $i \leq B$ and $j=K$,

$$
P_{i j}=\sum_{j=K+1}^{\infty} a_{j} .
$$

For $i \geq 0$ and $0 \leq j<K$

$$
P_{i j}=\sum_{z=0}^{j} a_{z}\binom{i}{j-z} \alpha^{i-(j-z)}(1-\alpha)^{j-z} .
$$

For $i \geq 0$ and $j=K$

$$
P_{i j}=\sum_{z=0}^{j} a_{z} \sum_{\ell=K}^{\infty}\binom{i}{\ell-z} \alpha^{i-(\ell-z)}(1-\alpha)^{\ell-z} .
$$

Cost formulas

For each $0 \leq x \leq K$ and $q \in\{0,1\}$,

$$
\begin{aligned}
c(x, q) & =q c_{B}+\left(c_{L} \alpha+c_{H}\right)(x-q B)^{+} \\
& =q c_{B}+c_{Q}(x-q B)^{+},
\end{aligned}
$$

with $c_{Q}=c_{L} \alpha+c_{H}$.

