

Évaluation T0+24 MARMOTE MARkovian MOdeling Tools and Environments

https://wiki.inria.fr/MARMOTE/Accueil

Contenu

Qui sommes-nous?

Qu'avons-nous réalisé?

Résultats théoriques

Échantillonage

XXX

Théorie

Résultats des applications

Résultats logiciels

Publications

Comment avons-nous travaillé?

Qu'allons-nous faire ?

Intensifier l'ingéniérie logicielle

Développer les applications

Communiquer

1 Présentation

Qui sommes-nous?

Partenaires Institutionnels et leur « partner heads » :

- ► INRIA/MAESTRO : Alain Jean-Marie, coordinateur
- INRIA/DYOGENE (anc. TREC) : Ana Bušić
- ► INRIA/MESCAL : Bruno Gaujal
- Univ. Versailles-St-Quentin/PRiSM : Jean-Michel Fourneau, co-coordinateur
- ► Telecom SudParis/SAMOVAR : Hind Castel-Taleb
- ▶ Univ. Paris-Est-Créteil/LACL : Nihal Pekergin
- ▶ Univ. Paris 6/LIP6 : Emmanuel Hyon

Spécialistes de la *modélisation Markovienne* et de ses applications en télécoms, systèmes distribués, fiabilité...

Issus de la même école : vocabulaire commun, travaux communs antérieurs...

Que voulons-nous faire dans MARMOTE

Objectifs du projet :

- Faire avancer les méthodes de résolution pour chaînes de Markov
 - échantillonage exact de la distribution stationnaire (« simulation parfaite »)
 - simulation Monte Carlo parallèle
 - solutions à forme close et algorithmes de résolution de flots
 - simulation numérique : calcul de bornes, méthodes de transformées, ...
- ▶ Faire avancer les outils logiciels
- ► Tester le tout dans plusieurs cas d'application

2 Qu'avons-nous réalisé?

Résultats : échantillonage exact (WP1)

Échantillonage exact : principe

Principe : simuler un ensemble de trajectoires jusqu'à ce qu'elles couplent. La distribution de l'état à cet instant-là est la distribution stationnaire.

Échantillonage exact : défis

Deux paramètres influent sur la complexité algorithmique :

- contrôler le nombre de trajectoires à simuler
- contrôler le temps de couplage des trajectoires

Échantillonage exact (suite)

Réalisations :

- un algorithme pour l'échantillonage dans les réseaux de Jackson
- un calcul de borne sur le temps de couplage pour les processus de naissance et de mort multidimensionels avec transitions interdites

Résultats xxx

xxx : principe et défis

bla bla pédagogique

Réalisations

bla bla réalisations

Théorie (WP4)

Réalisations :

- Solutions analytiques à forme close pour des réseaux de files d'attente avec signaux et algorithmes adaptés pour les calculs des distributions stationnaires
- ▶ Calcul de *bornes stochastiques* sur des distributions (meilleure borne dans le sens \leq_{st}) et applications à l'analyse d'une file soumis à un flux dont on a mesuré une trace.
- Simulation Parallèle pour l'analyse de la fiabilité modélisé par des Dynamic Fault Trees (pas dans la proposition initiale)
- Simulation Parallèle pour certains modèles spécifiées par Stochastic Process Algebra par l'approche dite du Parallel Prefix, conditions suffisantes d'application et méthodes de simulation.

Applications

Résultats :

- WP 5.1 (Modèle Cloud) Méthodologie combinant traces, mesures et bornes pour ...
- WP 5.2 Simulation parallèle pour une cellule
- WP 5.3 ...
- WP 5.4 Algorithmes d'échantillonage de la distribution stationnaire d'une bande électronique; méthode de décomposition temporelle
 - ? Analyse des méthodes de Restart par des résultats à forme produit

Logiciel : état de l'art

Au démarrage de MARMOTE, plusieurs logiciels d'analyse Markovienne développés par les membres :

- Psi, Psi3 (Inria/MESCAL)
- Xborne (UVSQ/PRiSM)
- ► ERS (Inria/MAESTRO)

Plan de travail en parallèle :

- Développer un logiciel-chapeau qui reprendra toutes ces fonctionnalités
- ▶ Poursuivre le développement indépendant de Psi3 et Xborne

Logiciel: Xborne

Réalisations :

- Logiciel d'analyse d'une file soumis à un flux mesuré par une trace (bientôt disponible, sous matlab)
- ▶ Logiciel de résolution de réseaux de files d'attente modélisant des restart (en liaison avec Free Univ. Berlin)

Résultats logiciels

Logiciel: Psi3

(if any)

Logiciel : MARMOTE

Réalisations :

- ▶ Définition de l'architecture du logiciel MARMOTE
- Études de cas autour des scientific workflow systems
- ▶ Implémentation des objets de base à partir du logiciel ERS
- ► Iterfaçage avec le logiciel Xborne (UVSQ/PRiSM)

Logiciel : MARMOTE (suite)

Idée générale :

- ► Hiérarchie de modèles Markoviens On-Off is a Homogeneous Birth-Death is a General Birth-Death is a Continuous-Time Markov Chain
- ► Familles de métriques Distribution : stationnaire, transitoire, de temps d'atteinte, etc.
- ▶ Pour chaque modèle et chaque métrique, des méthodes de résolution (calcul exact, approché, bornes) adaptées.
 - ⇒ les rendre accessibles par une API

Logiciel MARMOTE (fin): exemple de code

Comparaison de calculs de la distribution stationnaire // specific methods for F81¹ Felsenstein81* c1 = new Felsenstein81(...); Distribution* d1 = c1->stationaryDistribution(): Distribution* d2 = c1->simulateChain(...)->getDistribution(); // generic methods for MCs MarkovChain* c2 = static_cast<MarkovChain*>(c1); Distribution* d3 = c2->stationaryDistribution_GaussSeidel(); Distribution* d4 = c2->stationaryDistribution PowerMethod(); Distribution* d5 = c2->stationaryDistribution Xborne LowerBound(); Distribution* d6 = c2->replicateSamples Psi3(...); Distribution* d7 = c2->simulateChain(...)->getDistribution(); Distribution* d8 = c2->simulateChain(...)->getDistribution(); // comparison cout « "Distance L1(d1,d2) =" « d1->distanceL1(d2) « endl;

1. Felsenstein 81 est un modèle utilisé en bio-informatique

Publis

Quantitativement:

- ▶ 2 articles (en révision) dans des revues internationales
- ▶ ~15 dans des conférences internationales avec comité de lecture dont MASCOTS, PERFORMANCE, SIGMETRICS

Qualitativement:

▶ L'article de F. Ait Salaht, H. Castel, J.-M. Fourneau et N. Pekergin, «A bounding histogram approach for network performance analysis», a obtenu un des trois best paper award de la conférence IEEE HPCC 2013, Chine.

4 Comment l'avons-nous fait ?

Comment

Nous avons recruté :

- Participation de Farah Ait Salaht, doctorante DIGITEO
- Participation de Pierre Coucheney (MCF, UVSQ/PRiSM)
- Recrutement de Christelle Rovetta, Doctorante (Inria/DYOGENE)
- Recrutement d'Issam Rabhi, Ingénieur WP3 (Inria/MAESTRO)
- Recrutement de Farah Ait Salaht, Post-Doctorante (TSP/SAMOVAR)
- \implies 16% des ETP à T0+24.

Comment (suite)

Nous avons organisé des groupes de travail :

- Groupes de travail existants : xxx, yyy, zzz
- ▶ WP1/WP4 : Groupe de lecture hebdomadaire (Paris)
- ▶ WP4/WP 5.5 : groupe de travail sur le Contrôle Stochastique avec financement du GDR RO (Recherche Opéra- tionnelle) (Paris, Montpellier, Grenoble)
- ▶ WP 5.4 : Mise en place d'un groupe de travail sur le modèle de laser (Montpellier)
- WP 5.5 : Mise en place d'un groupe de travail sur des modèles de « développement durable » en Économie (Paris/Montpellier)

et des réunions plénières : janvier 2013, Octobre 2014, Juillet 2014.

Comment (fin)

Nous avons réajusté le programme de travail

▶ WP 5.2 : Suite au départ des contacts biologie, changement de cible vers la modélisation de réactions (bio)chimiques

Qu'allons-nous faire?

4 Qu'allons-nous faire?

Planning futur : logiciel

Accélérer sur le développement logiciel :

- Recrutement Ingénieur développement en cours (PSI3, Inria/MESCAL)
- Recrutement Post-Doctorant algorithmicien (UVSQ/PRiSM)
- Recrutement Ingénieur parallélisme en cours (UVSQ/PRiSM)
- Replanification de l'ingeniérie :
 - concaténer les deux ingénieurs WP3 INRIA/MAESTRO,
 - mettre en place un GdT avec les ingénieurs INRIA/MESCAL et UVSQ/PRiSM
 - \blacktriangleright sortir une version $0.\beta$ dans les premières semaines de 2015.

Développer les applications :

- ▶ Développer l'application WP5.4 (Laser) dans le logiciel MARMOTE
- Démarrer l'application « réseaux » (WP 5.1) : le post-doc a été recruté au 1/11/14
- Démarrer xxx
- Démarrer yyy
- ▶ Nouveau « use case » : modèle de gestion de l'énergie en télécoms

Planning futur: communication

Commencer à diffuser le projet :

- Communiquer dans les conférences nationales : ROADEF 2015. ...
 - Cette année en juin : communication bien reçue à l'Atelier en Évaluation de Performances, Sophia-Antipolis
- Communiquer à l'international : soumettre à VALUETOOLS, QEST. ...

