Accuracy vs. Complexity: the stochastic bound approach ${ }^{1}$

F. Aït Salaht ${ }^{1} \quad$ J. Cohen ${ }^{1} \quad$ H. Castel Taleb ${ }^{2}$ J.M. Fourneau ${ }^{1} \quad$ N. Pekergin ${ }^{3}$

${ }^{1}$ PRiSM, Univ. Versailles St Quentin, UMR CNRS 8144, Versailles France
${ }^{2}$ SAMOVAR, UMR 5157, Télécom Sud Paris, Evry, France
${ }^{3}$ LACL, Univ. Paris Est, Créteil, France

Wodes 2012, October 2012
${ }^{1}$ Digiteo Project: MARINA

Motivation

- Solving some problems of performance evaluation which deal with discrete distributions.

Motivation

- Solving some problems of performance evaluation which deal with discrete distributions.
- Problem:
- Numerical solutions are computationally hard;
- Distribution size increases multiplicatively.

Motivation

- Solving some problems of performance evaluation which deal with discrete distributions.
- Problem:
- Numerical solutions are computationally hard;
- Distribution size increases multiplicatively.
- Proposition:
- Use the stochastic bound theory to reduce the size of the distribution at each step of the computation;

Stochastic bound \Longrightarrow Result is a bound of the exact distribution;

- Control the distribution size \Longrightarrow Control of the complexity ;
- Develop an algorithmic approach to obtain stochastic bounds.

Basic assumptions

We consider:

- d: Discrete probability distribution on totally ordered state space $\mathcal{H},|\mathcal{H}|=N, \boldsymbol{d}(i)>0$ for $i \in \mathcal{H}$;
- \boldsymbol{r}. Positive increasing reward; $R_{\boldsymbol{d}}=\sum \boldsymbol{r}(i) \boldsymbol{d}(i)$;

Goal:

- Compute distribution $d b$ on support \mathcal{F} with K states such that $K \ll N$;
- $\boldsymbol{d b}$ is $\left\{\begin{array}{l}\text { the best approximation of } \boldsymbol{d} \text { for } \boldsymbol{r} ; \\ \text { stochastic lower (resp. upper) bound. }\end{array}\right.$
- Let $\mathcal{G}=\mathcal{H} \cup \mathcal{F}$.
- Totally ordered and finite state space \longrightarrow minimal and maximal state, denoted as MinState and MaxState.

Stochastic bounds

- $\mathcal{G}=\{1,2, \ldots, n\}$ a finite state space.
- X, Y : discrete distributions over \mathcal{G};
- $p_{X}(i)=\operatorname{prob}(X=i)$ and $p_{Y}(i)=\operatorname{prob}(Y=i)$ for $i \in \mathcal{G}$.

Definition ($\leq_{s t}$ order)

$$
X \leq_{s t} Y \text { iff } \quad \sum_{k=i}^{n} p_{X}(k) \leq \sum_{k=i}^{n} p_{Y}(k), \quad \forall i
$$

Stochastic bounds

- $\mathcal{G}=\{1,2, \ldots, n\}$ a finite state space.
- X, Y : discrete distributions over \mathcal{G};
- $p_{X}(i)=\operatorname{prob}(X=i)$ and $p_{Y}(i)=\operatorname{prob}(Y=i)$ for $i \in \mathcal{G}$.

Definition ($\leq_{s t}$ order)

$$
X \leq_{s t} Y \text { iff } \quad \sum_{k=i}^{n} p_{X}(k) \leq \sum_{k=i}^{n} p_{Y}(k), \quad \forall i
$$

Comparison of non decreasing functionals

$$
X \leq_{s t} Y \Longleftrightarrow \mathbb{E}[f(X)] \leq \mathbb{E}[f(Y)]
$$

for all non decreasing functions $f: \mathcal{G} \rightarrow \mathbb{R}^{+}$whenever expectations exist.

Most accurate stochastic bounds

For \boldsymbol{d} defined over \mathcal{H}, compute $\boldsymbol{d} 1$ and $\boldsymbol{d} 2$ such that:
(1) $\boldsymbol{d} 2 \leq_{s t} \boldsymbol{d} \leq_{s t} \boldsymbol{d} 1$,
(2) $d 1$ and $d 2$ have only K states (not necessarily the same set, but of the same size),
(3) $\quad \sum_{i \in \mathcal{G}} \boldsymbol{r}(i) \boldsymbol{d}(i)-\sum_{i \in \mathcal{G}} \boldsymbol{r}(i) \boldsymbol{d} 2(i)$
is minimal among the lower bounding distributions of \boldsymbol{d} with K states,
(4)

$$
\sum_{i \in \mathcal{G}} \boldsymbol{r}(i) \boldsymbol{d} 1(i)-\sum_{i \in \mathcal{G}} \boldsymbol{r}(i) \boldsymbol{d}(i)
$$

is minimal among the upper bounding distributions of \boldsymbol{d} with K states.

Most accurate stochastic bounds

Proposition

\boldsymbol{r} is increasing and $\boldsymbol{d} 2 \leq_{s t} \boldsymbol{d}$:

$$
\sum_{i \in \mathcal{G}} \boldsymbol{r}(i) \boldsymbol{d}(i)-\sum_{i \in \mathcal{G}} \boldsymbol{r}(i) \boldsymbol{d} 2(i) \text { is positive. }
$$

Most accurate stochastic bounds

Proposition

\boldsymbol{r} is increasing and $\boldsymbol{d} 2 \leq_{s t} \boldsymbol{d}$:

$$
\sum_{i \in \mathcal{G}} \boldsymbol{r}(i) \boldsymbol{d}(i)-\sum_{i \in \mathcal{G}} \boldsymbol{r}(i) \boldsymbol{d} 2(i) \text { is positive. }
$$

Proposition

If $\boldsymbol{d} \mathbf{2}$ is the more accurate lower bound, then $\boldsymbol{d} \mathbf{2}($ MinState $)>0$ and $\boldsymbol{d}($ MinState $)>0, \quad$ MinState $\in \mathcal{F} \cap \mathcal{H}$.

Most accurate stochastic bounds

Proposition

\boldsymbol{r} is increasing and $\boldsymbol{d} 2 \leq_{s t} \boldsymbol{d}$:

$$
\sum_{i \in \mathcal{G}} \boldsymbol{r}(i) \boldsymbol{d}(i)-\sum_{i \in \mathcal{G}} \boldsymbol{r}(i) \boldsymbol{d}(i) \text { is positive. }
$$

Proposition

If $\boldsymbol{d} 2$ is the more accurate lower bound, then $\boldsymbol{d} 2$ (MinState $)>0$ and $\boldsymbol{d}($ MinState $)>0$, MinState $\in \mathcal{F} \cap \mathcal{H}$.

Lemma

d2 is optimal distribution solution.

- For \boldsymbol{d} defined over \mathcal{H} and $\boldsymbol{d} 2$ over \mathcal{F}, then

$$
\mathcal{F} \subset \mathcal{H}(\text { i.e. } \mathcal{G}=\mathcal{H}) .
$$

A Greedy Algorithm

Compute a lower distribution over K points.
Algorithm 1 Greedy (sometimes optimal) Lower Bounding
1: Begin with $\boldsymbol{d} 2=\boldsymbol{d}$ and $\mathcal{F}=\mathcal{H}$;
2: Compute $\boldsymbol{d}(i)\left(\boldsymbol{r}(i)-\boldsymbol{r}\left(\Gamma_{\mathcal{H}}^{-}(i)^{2}\right)\right), \quad \forall i \in \mathcal{H} \backslash\{$ MinState $\}$;
3: Sort the results in increasing order;
4: Select the $(N-K)$ first states out of N to define SelectSet;
5: $\forall j \in$ SelectSet, $\quad \boldsymbol{d} 2\left(\Gamma_{\mathcal{F}}^{-}(j)\right)=\boldsymbol{d 2}\left(\Gamma_{\mathcal{F}}^{-}(j)\right)+\boldsymbol{d} 2\left(\Gamma_{\mathcal{H}}^{-}(j)\right)$;
Remove state j from $\mathcal{F}(\boldsymbol{d} 2(j)$ is not defined anymore).
${ }^{2}$ Predecessor of $x\left(\Gamma_{\mathcal{G}}^{-}(\mathrm{x})\right)$: Biggest state in \mathcal{G} smaller than x.

A Greedy Algorithm

Theorem

Algorithm provides $\boldsymbol{d} \mathbf{2}$ which is a strong stochastic lower bound of \boldsymbol{d} with support \mathcal{F}.

Complexity: $O(N \log N) \Longrightarrow$ Sort operation.

A Greedy Algorithm

```
Theorem
Algorithm provides \(\boldsymbol{d} \mathbf{2}\) which is a strong stochastic lower bound of \(\boldsymbol{d}\) with support \(\mathcal{F}\).
Complexity: \(O(N \log N) \Longrightarrow\) Sort operation.
```

- But what about the optimality of the algorithm?

Lemma

Removing two adjacent nodes \Longrightarrow cumulated rewards costs more than two independent deletions.
\Longrightarrow Optimality criterion is not always satisfied.

Optimal Algorithm based on dynamic programming

- Graph theory problem.
- Consider the weighted graph $G=(V, E)$ with:

$$
w(e)=\sum_{j \in \mathcal{H}: u<j<v} \boldsymbol{d}(j)(\boldsymbol{r}(j)-\boldsymbol{r}(u)) \text { if } v \in \mathcal{H}
$$

- Compute a shortest path P in G from state MinState to state EndState with K arcs.

Lemma

\boldsymbol{d}_{P} defined over \mathcal{F} such that $\boldsymbol{d}_{P} \leq_{s t} \boldsymbol{d}$. The path P from state MinState to state EndState through all elements of \mathcal{F} has weight:

$$
\sum_{i \in \mathcal{H}} \boldsymbol{r}(i) \boldsymbol{d}(i)-\sum_{i \in \mathcal{F}} \boldsymbol{r}(i) \boldsymbol{d}(i) .
$$

Optimal Algorithm based on dynamic programming

- Graph theory problem.
- Consider the weighted graph $G=(V, E)$ with:

$$
w(e)=\sum_{j \in \mathcal{H}: u<j<v} \boldsymbol{d}(j)(\boldsymbol{r}(j)-\boldsymbol{r}(u)) \text { if } v \in \mathcal{H}
$$

- Compute a shortest path P in G from state MinState to state EndState with K arcs.

Lemma

\boldsymbol{d}_{P} defined over \mathcal{F} such that $\boldsymbol{d}_{P} \leq_{s t} \boldsymbol{d}$. The path P from state MinState to state EndState through all elements of \mathcal{F} has weight:

$$
\sum_{i \in \mathcal{H}} \boldsymbol{r}(i) \boldsymbol{d}(i)-\sum_{i \in \mathcal{F}} \boldsymbol{r}(i) \boldsymbol{d}(i) .
$$

Algorithm Optimal Lower Bound

Guérin and Orda (2002): algorithm based on dynamic programming; Complexity: $O\left(N^{2} K\right)$ and cubic when K has the same order as N.

An Example

- Well-known problem in performance evaluation:

Distribution of the completion time in a stochastic task graph.

- Application of the proposed methodology but not an extensive comparison for stochastic task graphs.

An Example

- Well-known problem in performance evaluation:

Distribution of the completion time in a stochastic task graph.

- Application of the proposed methodology but not an extensive comparison for stochastic task graphs.

Figure: Task graph

The distribution of the completion time in a stochastic task graph

Task completion times: $\quad T_{i}=\max _{j \in \Gamma_{i}-\{ }\left\{T_{j}\right\}+S_{i}$.

The distribution of the completion time in a stochastic task graph

Task completion times: $\quad T_{i}=\max _{j \in \Gamma_{i}^{-}}\left\{T_{j}\right\}+S_{i}$.
Computation of the distribution require two operations:

- Addition \longrightarrow Convolution;
- Maximum of random variables \longrightarrow product of underlying pmf.

Monotonicity of (max, +) operations
Let x, y and z discrete random variables:
addition: $x \leq_{s t} y \Longrightarrow x \otimes z \leq y \otimes z$.
Max: $x \leq_{s t} y \Longrightarrow \max (x, z) \leq \max (x, z)$.

The distribution of the completion time in a stochastic task graph

Convolution example

We consider

- X, Y two independent random variables over \mathcal{G}_{X} and \mathcal{G}_{Y} resp.; $\mathcal{G}_{X}=\{1,3,5\}$ and $\mathcal{G}_{Y}=\{2,5\} ;$
Probability distributions: $p_{X}=[0.2,0.5,0.3]$ and $p_{Y}=[0.6,0.4]$.
- Resulting distribution

$$
\begin{aligned}
& p_{Z}=p_{X} \otimes p_{Y}=[0.12,0.3,0.08,0.18,0.2,0.12] \text { defined over } \\
& \mathcal{G}_{Z}=\{3,5,6,7,8,10\} .
\end{aligned}
$$

Convolution requires $O\left(\left|\mathcal{G}_{X}\right| \times\left|\mathcal{G}_{Y}\right|\right)$ operations (+) and at most $\left|\mathcal{G}_{X}\right| \times\left|\mathcal{G}_{Y}\right|$ states for the resulting distribution.
\Longrightarrow Explosion on the size of the distribution of the results.

Analytic result

Figure : Upper \& Lower bounds of the cumulative distributions for $\mathrm{m}=7, \mathrm{~K}=25$.

Analytic result

m	L	T	R_{d}
4	12160	0.7383	37.1455
5	46256	7.8542	43.3317
6	188416	415.1603	46.3308
7	785504	8.365310^{3}	46.5201
8	2974896	2.424410^{5}	56.1796

Table : Exact results

		Greedy		(Locally)-Optimal	
		T	$R_{d 2}$	T	$R_{d 2}$
4	25	0.1125	35.6090	0.5781	36.3648
	50	0.1705	36.5403	3.7996	36.8294
	25	0.1412	41.4151	0.8191	42.2156
	50	0.2484	42.5091	6.0513	42.8496
6	25	0.1793	43.6972	1.0872	45.0021
	50	0.3083	45.0599	8.1150	45.7225
	25	0.2134	42.9925	1.3683	44.7492
	50	0.3697	45.0117	10.1021	45.7387
8	25	0.2552	52.2219	1.4004	53.9880
	50	10.5801	54.1708	13.4566	55.0026

Table : Bounds

Analytic result

m	L	T	R_{d}
4	12160	0.7383	37.1455
5	46256	7.8542	43.3317
6	188416	415.1603	46.3308
7	785504	8.365310^{3}	46.5201
8	2974896	2.424410^{5}	56.1796

Table : Exact results

m	K	Greedy		(Locally)-Optimal	
		T	$R_{d 2}$	T	$R_{d 2}$
4	25	0.1125	35.6090	0.5781	36.3648
	50	0.1705	36.5403	3.7996	36.8294
5	25	0.1412	41.4151	0.8191	42.2156
	50	0.2484	42.5091	6.0513	42.8496
6	25	0.1793	43.6972	1.0872	45.0021
	50	0.3083	45.0599	8.1150	45.7225
7	25	0.2134	42.9925	1.3683	44.7492
	50	0.3697	45.0117	10.1021	45.7387
8	25	0.2552	52.2219	1.4004	53.9880
	50	10.5801	54.1708	13.4566	55.0026

Table : Bounds

Analytic result

m	L	T	R_{d}
4	12160	0.7383	37.1455
5	46256	7.8542	43.3317
6	188416	415.1603	46.3308
7	785504	8.365310^{3}	46.5201
8	2974896	2.424410^{5}	56.1796

Table : Exact results

m	K	Greedy		(Locally)-Optimal	
		T	$R_{d 2}$	T	$R_{d 2}$
4	25	0.1125	35.6090	0.5781	36.3648
	50	0.1705	36.5403	3.7996	36.8294
5	25	0.1412	41.4151	0.8191	42.2156
	50	0.2484	42.5091	6.0513	42.8496
6	25	0.1793	43.6972	1.0872	45.0021
	50	0.3083	45.0599	8.1150	45.7225
7	25	0.2134	42.9925	1.3683	44.7492
	50	0.3697	45.0117	10.1021	45.7387
8	25	0.2552	52.2219	1.4004	53.9880
	50	10.5801	54.1708	13.4566	55.0026

Table : Bounds

Analytic result

m	L	T	R_{d}
4	12160	0.7383	37.1455
5	46256	7.8542	43.3317
6	188416	415.1603	46.3308
7	785504	8.365310^{3}	46.5201
8	2974896	2.424410^{5}	56.1796

Table : Exact results

m	K	Greedy		(Locally)-Optimal	
		T	$R_{d 2}$	T	$R_{d 2}$
4	25	0.1125	35.6090	0.5781	36.3648
	50	0.1705	36.5403	3.7996	36.8294
5	25	0.1412	41.4151	0.8191	42.2156
	50	0.2484	42.5091	6.0513	42.8496
6	25	0.1793	43.6972	1.0872	45.0021
	50	0.3083	45.0599	8.1150	45.7225
7	25	0.2134	42.9925	1.3683	44.7492
	50	0.3697	45.0117	10.1021	45.7387
8	25	0.2552	52.2219	1.4004	53.9880
	50	10.5801	54.1708	13.4566	55.0026

Table : Lower Bounds

Conclusion

The proposed method consists to:

- Controls distribution sizes;
- Make a trade-off between accuracy and speed by changing distribution sizes.

Perspective:
Develop new applications in networks performance evaluation based on discretized histogram model.

