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Motivation

Motivation

• Solving some problems of performance evaluation which deal with
discrete distributions.

Problem:
I Numerical solutions are computationally hard;
I Distribution size increases multiplicatively.

Proposition:
I Use the stochastic bound theory to reduce the size of the

distribution at each step of the computation;
Stochastic bound =⇒ Result is a bound of the exact distribution;

I Control the distribution size =⇒ Control of the complexity ;
I Develop an algorithmic approach to obtain stochastic bounds.
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Motivation

Basic assumptions
We consider:

d: Discrete probability distribution on totally ordered state space
H, |H| = N, d(i) > 0 for i ∈ H;
r: Positive increasing reward; Rd =

∑
r(i)d(i);

Goal:
• Compute distribution db on support F with K states such

that K << N;

• db is
{

the best approximation of d for r ;
stochastic lower (resp. upper) bound .

Let G = H ∪ F .
Totally ordered and finite state space −→ minimal and maximal
state, denoted as MinState and MaxState.
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Stochastic bounds

Stochastic bounds

I G = {1, 2, . . . , n} a finite state space.
I X , Y : discrete distributions over G;
I pX (i) =prob(X = i) and pY (i) =prob(Y = i) for i ∈ G.

Definition (≤st order)
X ≤st Y iff

∑n
k=i pX (k) ≤

∑n
k=i pY (k), ∀i .

Comparison of non decreasing functionals

X ≤st Y ⇐⇒ E[f (X )] ≤ E[f (Y )]

for all non decreasing functions f : G → R+ whenever expectations
exist.
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Most accurate stochastic bounds

Most accurate stochastic bounds

For d defined over H, compute d1 and d2 such that:

1 d2 ≤st d ≤st d1,

2 d1 and d2 have only K states (not necessarily the same set, but
of the same size),

3
∑

i∈G r(i)d(i)−
∑

i∈G r(i)d2(i)
is minimal among the lower bounding distributions of d with K
states,

4
∑

i∈G r(i)d1(i)−
∑

i∈G r(i)d(i)
is minimal among the upper bounding distributions of d with K
states.
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Most accurate stochastic bounds

Most accurate stochastic bounds

Proposition
r is increasing and d2 ≤st d:∑

i∈G r(i)d(i)−
∑

i∈G r(i)d2(i) is positive.

Proposition
If d2 is the more accurate lower bound, then
d2(MinState)> 0 and d(MinState) > 0, MinState ∈ F ∩H.

Lemma
d2 is optimal distribution solution.

I For d defined over H and d2 over F , then

F ⊂ H (i .e. G = H).
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Most accurate stochastic bounds Greedy bounds

A Greedy Algorithm

Compute a lower distribution over K points.

Algorithm 1 Greedy (sometimes optimal) Lower Bounding
1: Begin with d2 = d and F = H;

2: Compute d(i)(r(i)− r(Γ−H(i)2)), ∀i ∈ H\{MinState};

3: Sort the results in increasing order;

4: Select the (N − K ) first states out of N to define SelectSet;

5: ∀j ∈ SelectSet, d2(Γ−F (j)) = d2(Γ−F (j)) + d2(Γ−H(j));

Remove state j from F (d2(j) is not defined anymore).

2Predecessor of x (Γ−G (x)): Biggest state in G smaller than x .
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Most accurate stochastic bounds Greedy bounds

A Greedy Algorithm

Theorem
Algorithm provides d2 which is a strong stochastic lower bound of d
with support F .

Complexity: O(NlogN) =⇒ Sort operation.

• But what about the optimality of the algorithm?

Lemma
Removing two adjacent nodes =⇒ cumulated rewards costs more than
two independent deletions.

=⇒ Optimality criterion is not always satisfied.
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Most accurate stochastic bounds Optimal Algorithm based on dynamic programming

Optimal Algorithm based on dynamic programming
Graph theory problem.
Consider the weighted graph G = (V , E) with:

w(e) =
∑

j∈H:u<j<v d(j)(r(j)− r(u)) if v ∈ H.
Compute a shortest path P in G from state MinState to state
EndState with K arcs.

Lemma
dP defined over F such that dP ≤st d. The path P from state MinState
to state EndState through all elements of F has weight:∑

i∈H r(i)d(i)−
∑

i∈F r(i)d(i).

Algorithm Optimal Lower Bound
Guérin and Orda (2002): algorithm based on dynamic programming;

Complexity: O(N2K ) and cubic when K has the same order as N.
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The distribution of the completion time in a stochastic task graph

An Example
I Well-known problem in performance evaluation:

Distribution of the completion time in a stochastic task graph.

• Application of the proposed methodology but not an extensive
comparison for stochastic task graphs.

i

m nodes

task
Si : Distribution of the

completion time

Figure: Task graph
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The distribution of the completion time in a stochastic task graph

The distribution of the completion time in a stochastic
task graph

Task completion times: Ti = maxj∈Γ−i
{Tj}+ Si .

Computation of the distribution require two operations:{
• Addition −→ Convolution;
• Maximum of random variables −→ product of underlying pmf.

Monotonicity of (max , +) operations
Let x, y and z discrete random variables:

addition: x ≤st y =⇒ x ⊗ z ≤ y ⊗ z.

Max: x ≤st y =⇒ max(x , z) ≤ max(x , z).
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The distribution of the completion time in a stochastic task graph

The distribution of the completion time in a stochastic
task graph
Convolution example
We consider

X, Y two independent random variables over GX and GY resp.;
GX = {1, 3, 5} and GY = {2, 5};
Probability distributions: pX = [0.2, 0.5, 0.3] and pY = [0.6, 0.4].

Resulting distribution
pZ = pX ⊗ pY = [0.12, 0.3, 0.08, 0.18, 0.2, 0.12] defined over
GZ = {3, 5, 6, 7, 8, 10}.

Convolution requires O(|GX | × |GY |) operations (+) and
at most |GX | × |GY | states for the resulting distribution.

=⇒ Explosion on the size of the distribution of the results.
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The distribution of the completion time in a stochastic task graph

Analytic result

Figure : Upper & Lower bounds of the cumulative distributions for m=7, K=25.
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The distribution of the completion time in a stochastic task graph

Analytic result
m L T Rd
4 12160 0.7383 37.1455
5 46256 7.8542 43.3317
6 188416 415.1603 46.3308
7 785504 8.3653 103 46.5201
8 2974896 2.4244 105 56.1796

Table : Exact results

Greedy (Locally)-Optimal
m K T Rd2 T Rd2

25 0.1125 35.6090 0.5781 36.3648
4 50 0.1705 36.5403 3.7996 36.8294

25 0.1412 41.4151 0.8191 42.2156
5 50 0.2484 42.5091 6.0513 42.8496

25 0.1793 43.6972 1.0872 45.0021
6 50 0.3083 45.0599 8.1150 45.7225

25 0.2134 42.9925 1.3683 44.7492
7 50 0.3697 45.0117 10.1021 45.7387

25 0.2552 52.2219 1.4004 53.9880
8 50 10.5801 54.1708 13.4566 55.0026

Table : Bounds
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Conclusion

Conclusion

The proposed method consists to:
Controls distribution sizes;
Make a trade-off between accuracy and speed by changing
distribution sizes.

Perspective:
Develop new applications in networks performance evaluation

based on discretized histogram model.
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