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An inventory control
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Customer parameters

J classes :

cj rejection cost

λj arrival rate Poisson

Stock parameters

Stock size S

replenishments are exponential

µ is the replenishment parameter
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Customers haven’t the same cost (c1 > c2 > . . . > cJ).

Satisfaction of demands of all customers indifferently lead to a full system.

Full system means no treatment of customer with the highest cost
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Customers haven’t the same cost (c1 > c2 > . . . > cJ).

Satisfaction of demands of all customers indifferently lead to a full system.

Full system means no treatment of customer with the highest cost

We want to choose the customer to treat
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Finite size or holding Cost

In the literature (e.g. Vericourt 02) two models

1 with backlog

2 with rejection

In the literature (Pouters 02 for an overview) two main models :

1 with Finite Stock

2 with Holding Costs (per capita and per time unit)

We can with from model two to model one easily.

Here we assume a finite stock size AND an holding cost.
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Representation using a queue

We consider items in replenishment instead of the inventory.

c j

s=S−x

µ

λ

λ

λ

Thus the previous model can be represented by a queue : jobs in the queue
represents the item in replenishment.

When the queue is empty then the stock is full (S items in the stock).

When the queue is full the stock is empty.

If a demands is satisfied then the item is immediately admitted in
replenishment and a job enters in the queue :
This is an admission control policy.
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Policy

Policy

We define a policy π as a sequence of decision rules

π = (π1(h1), . . . , πn(hn), . . .) .

A decision rule maps the history h (states of the process, events, decision of the
controller) to an action (here acceptance or rejection).

A policy π is a Markov stationary deterministic policy i.e. if π∗ = (π(x), π(x), . . .).

Dynamical behaviour of the system

Once the policy is fixed the dynamic of the system is random :

Tπ
n epoch of the nth transition

xπn state just after the nth transition.
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Objective function

Average cost

We define vt(x) as

V π
t (x) = E

[νt−1∑
n=0

(Tπ
n+1 − Tπ

n )cR(xπn ) +
νt−1∑
n=0

cI (xπn , π(xπn ))
]
. (1)

with νt the number of transitions until t ;
cR the rate cost ;
cI the lump cost.

The average cost is ρπ :

ρπ = lim inf
t→∞

1

t
V π
t (x).

We want to find ρ∗ = minπ ρ
π.

This means to characterize the optimal decision rule π∗(x) w.r.t the state.
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N-stage total cost

Assume a policy of length N : π(N). The minimal expected N-stage total cost is

V π
N (x) = min

π(N)
Eπx

[
N−1∑
n=0

(
(Tπ

n+1 − Tπ
n )cR(xπn ) + cI (xπn , π(xπn ))

)]
(2)

Relation with the average cost

From Puterman an alternate definition of ρπ is

ρπ = lim inf
N→∞

E
[∑N

n=0

(
(Tπ

n+1 − Tπ
n )cR(xπn ) + cI (xπTπ

n
, π(xπTπ

n
))
)]

E
∑N

n=0(Tπ
n+1 − Tπ

n )
.

When the process is uniformized then

lim
N→∞

1

N
V π
N =

ρπ

Λ
.
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Dynamic Programming

Puterman[96] approach : transformation into a fix point equation

We transform the Equation (1) into a fix point Equation : the dynamic
programming equation or Bellman Equation.

V (x) + ρπ = min
q∈Action Set

c(x , q) +
∑
y

P(y |(x , q)V (y). (3)

This fix point equation has one unique solution V ∗.

Koole [06] approach

We transform (2) under VN = T (VN−1),
with

T (V )(x) =
1

Λ

h̄(x) + µv((x − 1)+) +
J∑

j=1

λj min{cj + V (x),V (x + 1)}

 (4)

We have limN→∞
1
N VN = ρπ

Λ
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Numerical computation

We want

We want the couple (ρ∗, π∗)

the optimal value ρ∗

The optimal policy is π∗(x) = arg min c(x , q) + Eq
x (V )

Value iteration
1 Both Equation 3 and 2 can be expressed under Vn = TVn−1

2 We start with V0 = 0

3 until
max
x

(Vn(x)− Vn−1(x))−min
x

(Vn(x)− Vn−1(x)) 6 ε

But :
Problem : the curve of dimensionality
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Critical levels policy (threshold or control limit)

We work with with policy with a special form : The critical levels policy :
The acceptation depends on a level in the queue load.
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31l

λ +λ2 1

Accept classes 1 and 2

Accept class 1

Accept all classes

λ 1 3λ  + λ  + λ 12

Literature review for the example

Ha 97 with exponential replenishment

Ha 2000 with Erlang Replenishment

Wieczorek, Busic and H 2011 with Hypo exponential
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In the Literature

Axis 1 Optimality proofs

Show that thresholds policies are
optimal.

Classical framework Koole(2006),
Glasserman & Yao(1994)

Formal Approach (sketch)

Showing that when the value
functions is convex it implies a
threshold.

V (x + 1)− V (x) > cj

Showing the property is kept
through Fix Point Equation.
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In the Literature

Axis 2 Effective Computation of
the Levels

No framework no generic method

Only ad hoc methods

Very few proofs about the
optimality

Very few Stochastic methods such
as stochastic gradient.

Usual approach

Computing the value of Vl for a fixed l
by

1 Classical BD process methods

2 Markov Reward Process

This gives a deterministic non linear
integer problem

The aim is then to determine the set
of optimal values of the levels.
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Expression in a deterministic problem (Dekker 97)

MC dynamic

Once any stationary deterministic policy is applied, the behaviour of the
system is described by a stochastic process.

The behaviour of the system is described by a Markov Chain

Here we have an M/M/1/S queue with an arrival Poisson process with
variable rates

We can compute stationary probability and deduce the average cost Vl .

Deducing average cost

Computation of the stationary probabilities (qk(l) the probability to have k
customers when the level is l)

Computation of the fill rate

βj(l) =
∑lj−1

k=0 qk the proportion of items j that are delivered

The average cost q.r.t vector l is

Vl =
∑
j

λjcj(1− βj(l))
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A Minimization Problem

We want

Minimize ρl =
∑
j∈J

(
cjλj

S∑
k=lj

qk(l)
)

+
∑
k∈S

h̄(k)qk(l)

subject to 0 6 lJ 6 lJ−1 6 . . . 6 l1 6 S .
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Local search

Dekker (1997) and van Houtum (2002)

Model a bit slightly different

The size S is variable

There is an holding cost

Propose an exact method to determine a value of S
Propose 3 heuristics of local search to compute the optimal levels for a fixed S .

A local search
while Modification of the threshold occur do

for J from 1 to J do
if V (l + ej) 6 V (l) then

l = l + ej
end if

end for
end while
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Greedy

Model of backlogging

Model is a bit slighty different :

No losses but backlog of unsatisfied demands (≈ infinite queue)
The goal : to find the levels of backlog..

Vericourt (2002) exponential services, Karaesmen (2009) Erlang services

Greedy approach

Decomposition of the problem w.r.t. the problem with smaller size.
P(n) = f (λn, cn,P(n − 1)).

Greedy approach :
I sorting classes by decreasing order of the backlog cost.
I Optimize class k (with 1 6 k 6 n) by considering that classes of greater index

than k are not present

Greedy approach is optimal when backlogging.

Close formula for a single threshold (old result) in exponential case.
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Branch and Bound Method

Hard to prove convexity

Convexity with respect to l i.e. l 7→ Vl(x)

Vl(x)− Vl−1(x) 6 Vl+1(x)− Vl(x)

Branch and Bound
It exists lower and upper bound by merging classes and solving a smaller
problem.

But this induces an order of the levels to branch.

Lower Bound
If I search a lower bound according to a level of index k .
I merge all the customers with class j > k by fixing there cost to cJ .

V(l1,l2,...,lJ )(x) > V(l1,l2,...,lk+1)
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Continuous Approximation

An acceptance ratio

We consider we have now an acceptance rate αj instead of a level lj for each
class.

We accept a class j customer with a Bernoulli probability αj .

lj = dSαje
We have an M/M/1/S queue with a fixed rate Poisson Process
λ(α) =

∑
j λjαj

Cost Function

Once the vector α = (α1, . . . , αJ). The probability qk depends on α (so denoted
by qk(α))

ρapp =
∑
j

αjλjcj + qS(α)
∑
j

λj
λ

cj

But : hard to prove the function is convex in l and gradient descent is not proved.
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RunTime Comparizons

We run the different methods on 520 instances.
Applied for different sizes of the stock.

J S Exhaustif (ordre) LS G VI VI (ordre) B&B
3 5 0.0031 0.0021 0.0017 0.0836 0.0758 0.0066
3 10 0.0117 0.0041 0.0039 0.50 0.4572 0.0203
3 50 0.647 0.0340 0.0500 18.10 16.581 0.8569
3 99 4.440 0.1062 0.1767 48.52 44.447 6.1171
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Precision Comparizons

130 instances
Average relative Error

J S LS G VI VI (ordre) B&B
3 5 0 0. 009 3.8 10−6 3.84 10−6 0
3 10 0 0.014 2.14 10−5 2.14 10−5 0
3 50 0 8.36 10−5 0.0033 0.0033 0
3 99 0 4.15 10−6 0.0125 0,0125 0

Average relative error for instances for which the min is not reached

J S LS G VI VI (ordre) B&B
3 5 0 0.09 (13) 2.94 10−5 (17) 2.94 10−5 (17) 0
3 10 0 0.08 (24) 0.000147 (19) 0.000147 (19) 0
3 99 0 4.5 10−5 (11) 0.346 (46) 0.346 (46) 0
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Conclusion and perspective

Conclusion
Brief review of Literature

Short comparizon between methods

Perspective

Enlarge the comparizons

Comparizons using bounds

Enlarge the methods of computation
I SDDP and Stochastic Programming
I Markov Reward Process
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Markov Reward Process

In order to compute quickly lower bound.

MRP
I assume a continuous time Markov Chain such that the transition times in
all the state is bounded by Λ.

We observe the continuous time process at epochs with interval time that
follows an exponential with parameter Λ

We capture transition epochs AND epochs with no transition.

The kernel is then

P(x , y) =

{
Q(x,y)

Λ for x 6= y ,

1−
∑

z 6=x
Q(x,z)

Λ for x = y

Bollati, Busic, Hyon ( ) Marmotte 14: Computing Critical Levels 07/2014 27 / 27


	Introduction
	Inventory Control Problem
	Objective function and Optimal Policy
	Optimal Policy Computation

	Critical Level Policy
	Computing Levels
	Expression in a deterministic Problem
	List of Methods

	Numerical Experiment
	Conclusion

