
David Auger, Pierre Coucheney, Yann Strozecki
Université de Versailles Saint-Quentin-en-Yvelines

Almost Acyclic Simple Stochastic
Games

Jeudi 23 janvier,
Journées GT Jeux

Simple stochastic game (SSG)

A Simple Stochastic Game (Shapley, Condon) is defined by a directed
graph with :

three sets of vertices VMAX , VMIN , VAVE of outdegree 2

two (or more) ’sink’ vertices with rational values

max A A

0 1

A min A

Two players : MAX and MIN, and randomness.

Simple stochastic game (SSG)

A Simple Stochastic Game (Shapley, Condon) is defined by a directed
graph with :

three sets of vertices VMAX , VMIN , VAVE of outdegree 2

two (or more) ’sink’ vertices with rational values

max A A

0 1

A min A

Two players : MAX and MIN, and randomness.

Rules of a SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.
player MIN wants to minimize the value. If no sink is reached, the
value is 0.

max A A

0 1

A min A

On a MAX node player MAX decides where to go next.

Rules of a SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.
player MIN wants to minimize the value. If no sink is reached, the
value is 0.

max A A

0 1

A min A

On a MAX node player MAX decides where to go next.

Rules of a SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.
player MIN wants to minimize the value. If no sink is reached, the
value is 0.

max A A

0 1

A min A

On a AVE node the next vertex is randomly determined.

Rules of a SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.
player MIN wants to minimize the value. If no sink is reached, the
value is 0.

max A A

0 1

A min A

On a MIN node player MIN decides where to go next.

Rules of a SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.
player MIN wants to minimize the value. If no sink is reached, the
value is 0.

max A A

0 1

A min A

Etc.

Rules of a SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.
player MIN wants to minimize the value. If no sink is reached, the
value is 0.

max A A

0 1

A min A

Etc.

Rules of a SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.
player MIN wants to minimize the value. If no sink is reached, the
value is 0.

max A A

0 1

A min A

Etc.

Rules of a SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.
player MIN wants to minimize the value. If no sink is reached, the
value is 0.

max A A

0 1

A min A

Etc.

Strategies and values

General definition of a strategy σ for a player MAX :

σ : partial play ending in VMAX 7−→ probability distribution on outneighbours

The value of a vertex x is the best expected value of a sink that MAX can
guarantee starting from x :

v(x) = sup
σ strategy
for MAX

inf
τ strategy
for MIN

Eσ,τ (value of the sink reached | game starts in x)︸ ︷︷ ︸
vσ,τ(x)

Problem : given a game and a vertex, compute the value of the vertex.

Decision problem : v(x) > 0.5 ?

Strategies and values

General definition of a strategy σ for a player MAX :

σ : partial play ending in VMAX 7−→ probability distribution on outneighbours

The value of a vertex x is the best expected value of a sink that MAX can
guarantee starting from x :

v(x) = sup
σ strategy
for MAX

inf
τ strategy
for MIN

Eσ,τ (value of the sink reached | game starts in x)︸ ︷︷ ︸
vσ,τ(x)

Problem : given a game and a vertex, compute the value of the vertex.

Decision problem : v(x) > 0.5 ?

Strategies and values

General definition of a strategy σ for a player MAX :

σ : partial play ending in VMAX 7−→ probability distribution on outneighbours

The value of a vertex x is the best expected value of a sink that MAX can
guarantee starting from x :

v(x) = sup
σ strategy
for MAX

inf
τ strategy
for MIN

Eσ,τ (value of the sink reached | game starts in x)︸ ︷︷ ︸
vσ,τ(x)

Problem : given a game and a vertex, compute the value of the vertex.

Decision problem : v(x) > 0.5 ?

Strategies and values

General definition of a strategy σ for a player MAX :

σ : partial play ending in VMAX 7−→ probability distribution on outneighbours

The value of a vertex x is the best expected value of a sink that MAX can
guarantee starting from x :

v(x) = sup
σ strategy
for MAX

inf
τ strategy
for MIN

Eσ,τ (value of the sink reached | game starts in x)︸ ︷︷ ︸
vσ,τ(x)

Problem : given a game and a vertex, compute the value of the vertex.

Decision problem : v(x) > 0.5 ?

Why simple stochastic games ?

They generalize Markov decision processes.

They are an example of a problem in NP∩coNP not known to be in P.

Why simple stochastic games ?

They generalize Markov decision processes.

They are an example of a problem in NP∩coNP not known to be in P.

Simpler game : Stopping SSGs

A SSG is stopping if for all strategies, the game reaches a sink vertex
almost surely.

Theorem (Condon 89)
For every SSG G, there is a polynomial-time computable SSG G’ such that

G’ is stopping

size of G’ = poly(size of G)

for all vertices x, vG′(x) > 1
2 if and only if vG(x) > 1

2

a

.
.

.
.

.
0

b

Simpler game : Stopping SSGs

A SSG is stopping if for all strategies, the game reaches a sink vertex
almost surely.

Theorem (Condon 89)
For every SSG G, there is a polynomial-time computable SSG G’ such that

G’ is stopping

size of G’ = poly(size of G)

for all vertices x, vG′(x) > 1
2 if and only if vG(x) > 1

2

a

.
.

.
.

.
0

b

Simpler game : Stopping SSGs

A SSG is stopping if for all strategies, the game reaches a sink vertex
almost surely.

Theorem (Condon 89)
For every SSG G, there is a polynomial-time computable SSG G’ such that

G’ is stopping

size of G’ = poly(size of G)

for all vertices x, vG′(x) > 1
2 if and only if vG(x) > 1

2

a

.
.

.
.

.
0

b

Simpler strategies

To compute values we can restrict our strategies to be

pure : deterministic

memoryless : does not depend on the entire history

stationary : does not depend on time step

We call them positional strategies for short.

σ : VMAX −→ V , τ : VMIN −→ V

max

min

Simpler strategies

To compute values we can restrict our strategies to be

pure : deterministic

memoryless : does not depend on the entire history

stationary : does not depend on time step

We call them positional strategies for short.

σ : VMAX −→ V , τ : VMIN −→ V

max

min

Minimax Theorem

Theorem (Condon 89)
For all vertices x,

v(x) = sup
σ general

inf
τ general

vσ,τ(x)

= inf
τ general

sup
σ general

vσ,τ(x)

= max
σ positional

min
τ positional

vσ,τ(x)

= min
τ positional

max
σ positional

vσ,τ(x)

Computing values

Fix σ,τ positional strategies.

if x ∈ MAX, vσ,τ(x) = vσ,τ(σ(x))

if x ∈ MIN, vσ,τ(x) = vσ,τ(τ(x))

if x ∈ AVE, vσ,τ(x) = 1
2 vσ,τ(x1)+ 1

2 vσ,τ(x2)

if x ∈ SINK, vσ,τ(x) ∈ [0,1]

x

x1

x2

This amounts to solve a linear system.

The switch operation

x is a MIN vertex and vσ,τ(x) = vσ,τ(x1) > vσ,τ(x2)

switching τ at x : τ′(x) = x2 and equal to τ elsewhere.

x

vσ,τ = 0.7

x1

vσ,τ = 0.7

x2

vσ,τ = 0.4

Such a switch is profitable for MIN :

for all y, vσ,τ′(y) ≤ vσ,τ(y)

in particular vσ,τ′(x) < vσ,τ(x)

Optimality condition : no switch .
Algorithm to find an optimal strategy against σ : keep switching.

The switch operation

x is a MIN vertex and vσ,τ(x) = vσ,τ(x1) > vσ,τ(x2)

switching τ at x : τ′(x) = x2 and equal to τ elsewhere.

x

vσ,τ = 0.7

x1

vσ,τ = 0.7

x2

vσ,τ = 0.4

Such a switch is profitable for MIN :

for all y, vσ,τ′(y) ≤ vσ,τ(y)

in particular vσ,τ′(x) < vσ,τ(x)

Optimality condition : no switch .
Algorithm to find an optimal strategy against σ : keep switching.

The switch operation

x is a MIN vertex and vσ,τ(x) = vσ,τ(x1) > vσ,τ(x2)

switching τ at x : τ′(x) = x2 and equal to τ elsewhere.

x

vσ,τ = 0.7

x1

vσ,τ = 0.7

x2

vσ,τ = 0.4

Such a switch is profitable for MIN :

for all y, vσ,τ′(y) ≤ vσ,τ(y)

in particular vσ,τ′(x) < vσ,τ(x)

Optimality condition : no switch .
Algorithm to find an optimal strategy against σ : keep switching.

Computing best response

Fix σ only.

max
∑

x∈MIN
vσ(x)

if x ∈ MAX, vσ(x) = vσ(σ(x))

if x ∈ MIN, vσ(x) ≤ vσ(x1) and vσ(x) ≤ vσ(x2)

if x ∈ AVE, vσ(x) = 1
2 vσ,(x1)+ 1

2 vσ(x2)

if x ∈ SINK, vσ(x) ∈ [0,1]

x

x1

x2

This amounts to solve a linear program.

Strategy improvement algorithms

The strategy improvement algorithm a.k.a Hoffman-Karp algorithm
(1966, MDP context) is

1 choose τ0 and let σ0 =σ(τ0) (best response)
2 while (σk,τk) is not optimal, obtain τk+1 by switching τk ; let

σk+1 =σ(τk+1)

based on :

Lemma
vσk+1,τk+1 < vσk ,τk as long as (σk,τk) is not optimal.

Theorem

The HK algorithm makes at most O(2n/n) iterations

Unfortunately, this can take exponential time [Condon, Friedman].

When the algorithm ends, say at (σ∗,τ∗), each one plays optimally :

vσ∗,τ∗ = max
σ pos

min
τ pos

vσ,τ = min
τ pos

max
σ pos

vσ,τ

Strategy improvement algorithms

The strategy improvement algorithm a.k.a Hoffman-Karp algorithm
(1966, MDP context) is

1 choose τ0 and let σ0 =σ(τ0) (best response)
2 while (σk,τk) is not optimal, obtain τk+1 by switching τk ; let

σk+1 =σ(τk+1)

based on :

Lemma
vσk+1,τk+1 < vσk ,τk as long as (σk,τk) is not optimal.

Theorem

The HK algorithm makes at most O(2n/n) iterations

Unfortunately, this can take exponential time [Condon, Friedman].

When the algorithm ends, say at (σ∗,τ∗), each one plays optimally :

vσ∗,τ∗ = max
σ pos

min
τ pos

vσ,τ = min
τ pos

max
σ pos

vσ,τ

Strategy improvement algorithms

The strategy improvement algorithm a.k.a Hoffman-Karp algorithm
(1966, MDP context) is

1 choose τ0 and let σ0 =σ(τ0) (best response)
2 while (σk,τk) is not optimal, obtain τk+1 by switching τk ; let

σk+1 =σ(τk+1)

based on :

Lemma
vσk+1,τk+1 < vσk ,τk as long as (σk,τk) is not optimal.

Theorem

The HK algorithm makes at most O(2n/n) iterations

Unfortunately, this can take exponential time [Condon, Friedman].

When the algorithm ends, say at (σ∗,τ∗), each one plays optimally :

vσ∗,τ∗ = max
σ pos

min
τ pos

vσ,τ = min
τ pos

max
σ pos

vσ,τ

Solving an acyclic SSG in linear time

min

A

A

max 0

1

No cycle : compute the values backward from the sinks in time O(n).

Milder form of acyclicity

Max-acyclic game : each MAX vertex has at most one outgoing edge in a
cycle.

Assume the graph is strongly connected once sinks are removed
⇒ one outneighbour of each MAX vertex is a sink.

If not, compute the strongly connected components :

M1

M2

M3

G1

G2

G3

−→
−→

−→ M1

M2

M3

v1

v2

v3

In the following, all SSGs are assumed strongly connected.

Milder form of acyclicity

Max-acyclic game : each MAX vertex has at most one outgoing edge in a
cycle.

Assume the graph is strongly connected once sinks are removed
⇒ one outneighbour of each MAX vertex is a sink.

If not, compute the strongly connected components :

M1

M2

M3

G1

G2

G3

−→
−→

−→ M1

M2

M3

v1

v2

v3

In the following, all SSGs are assumed strongly connected.

Milder form of acyclicity

Max-acyclic game : each MAX vertex has at most one outgoing edge in a
cycle.

Assume the graph is strongly connected once sinks are removed
⇒ one outneighbour of each MAX vertex is a sink.

If not, compute the strongly connected components :

M1

M2

M3

G1

G2

G3

−→
−→

−→ M1

M2

M3

v1

v2

v3

In the following, all SSGs are assumed strongly connected.

Milder form of acyclicity

Max-acyclic game : each MAX vertex has at most one outgoing edge in a
cycle.

Assume the graph is strongly connected once sinks are removed
⇒ one outneighbour of each MAX vertex is a sink.

If not, compute the strongly connected components :

M1

M2

M3

G1

G2

G3

−→
−→

−→ M1

M2

M3

v1

v2

v3

In the following, all SSGs are assumed strongly connected.

MAX-acyclic SSG

x ∈MAX is open/closed : the strategy chooses a sink/not a sink.

Theorem
The strategy improvment algorithm (MAX switches + MIN responds
optimally) starting with open MAX vertices performs at most |VMAX |
switches.

Need to compute optimal response ⇒ O(n4|VMAX |).

proof based on : once a MAX vertex is closed, it is for ever.

Let x be a MAX vertex and s its sink with value v(s).
Recall that vσk ,τk (x) is increasing.

x is switched to closed at step k ⇒ v(s) < vσk ,τk (x).

MAX-acyclic SSG

x ∈MAX is open/closed : the strategy chooses a sink/not a sink.

Theorem
The strategy improvment algorithm (MAX switches + MIN responds
optimally) starting with open MAX vertices performs at most |VMAX |
switches.

Need to compute optimal response ⇒ O(n4|VMAX |).

proof based on : once a MAX vertex is closed, it is for ever.

Let x be a MAX vertex and s its sink with value v(s).
Recall that vσk ,τk (x) is increasing.

x is switched to closed at step k ⇒ v(s) < vσk ,τk (x).

MAX-acyclic SSG

x ∈MAX is open/closed : the strategy chooses a sink/not a sink.

Theorem
The strategy improvment algorithm (MAX switches + MIN responds
optimally) starting with open MAX vertices performs at most |VMAX |
switches.

Need to compute optimal response ⇒ O(n4|VMAX |).

proof based on : once a MAX vertex is closed, it is for ever.

Let x be a MAX vertex and s its sink with value v(s).
Recall that vσk ,τk (x) is increasing.

x is switched to closed at step k ⇒ v(s) < vσk ,τk (x).

MAX-acyclic SSG

x ∈MAX is open/closed : the strategy chooses a sink/not a sink.

Theorem
The strategy improvment algorithm (MAX switches + MIN responds
optimally) starting with open MAX vertices performs at most |VMAX |
switches.

Need to compute optimal response ⇒ O(n4|VMAX |).

proof based on : once a MAX vertex is closed, it is for ever.

Let x be a MAX vertex and s its sink with value v(s).
Recall that vσk ,τk (x) is increasing.

x is switched to closed at step k ⇒ v(s) < vσk ,τk (x).

MAX-acyclic SSG

x ∈MAX is open/closed : the strategy chooses a sink/not a sink.

Theorem
The strategy improvment algorithm (MAX switches + MIN responds
optimally) starting with open MAX vertices performs at most |VMAX |
switches.

Need to compute optimal response ⇒ O(n4|VMAX |).

proof based on : once a MAX vertex is closed, it is for ever.

Let x be a MAX vertex and s its sink with value v(s).
Recall that vσk ,τk (x) is increasing.

x is switched to closed at step k ⇒ v(s) < vσk ,τk (x).

MAX and MIN-acyclic SSG

If the game is also MIN-acyclic, the same argument holds for computing
the best reponse of MIN as follows :

1 start with all MIN vertices open.

2 while the strategy is not optimal, close all switchable MIN vertices.

Need to compute the values ⇒ O(n3|VMIN ||VMAX |).

MAX and MIN-acyclic SSG

If the game is also MIN-acyclic, the same argument holds for computing
the best reponse of MIN as follows :

1 start with all MIN vertices open.

2 while the strategy is not optimal, close all switchable MIN vertices.

Need to compute the values ⇒ O(n3|VMIN ||VMAX |).

1-cycle SSG

With only one cycle the game is both Max-acyclic and Min-acyclic.

In linear time, each of these assumptions can be checked : the optimal
strategy

A1 is closed at every vertex

A2 contains at least an open MAX vertex

A3 contains at least an open MIN vertex

algo for checking A2 :

1 solve the acyclic SSG obtained when an arbitrary MAX vertex is fixed
to open

2 if A2 is true, the next open MAX vertex (say x) is also open in the
1-cycle SSG

3 so check it by solving the acyclic SSG forced to be open at x.

1-cycle SSG

With only one cycle the game is both Max-acyclic and Min-acyclic.

In linear time, each of these assumptions can be checked : the optimal
strategy

A1 is closed at every vertex

A2 contains at least an open MAX vertex

A3 contains at least an open MIN vertex

algo for checking A2 :

1 solve the acyclic SSG obtained when an arbitrary MAX vertex is fixed
to open

2 if A2 is true, the next open MAX vertex (say x) is also open in the
1-cycle SSG

3 so check it by solving the acyclic SSG forced to be open at x.

1-cycle SSG

With only one cycle the game is both Max-acyclic and Min-acyclic.

In linear time, each of these assumptions can be checked : the optimal
strategy

A1 is closed at every vertex

A2 contains at least an open MAX vertex

A3 contains at least an open MIN vertex

algo for checking A2 :

1 solve the acyclic SSG obtained when an arbitrary MAX vertex is fixed
to open

2 if A2 is true, the next open MAX vertex (say x) is also open in the
1-cycle SSG

3 so check it by solving the acyclic SSG forced to be open at x.

k-cycles SSG

Based on the previous algo, by opening a vertex next to each fork vertex :

Theorem

A k-cycles SSG can be solved in time O(n4kk!)

To be compared to the strategy improvment algorithm : O(n52k)

k-cycles SSG

Based on the previous algo, by opening a vertex next to each fork vertex :

Theorem

A k-cycles SSG can be solved in time O(n4kk!)

To be compared to the strategy improvment algorithm : O(n52k)

SSG with feedback vertex set of size k

There are k vertices that, once removed, yields an acyclic SSG.

B even if k = 1, the number of cycles can be large

A A A A 0

Bisection algo with k = 1 : x is the vertex to remove to get an acyclic SSG

1 solve the acyclic SSG obtained when x is replaced by a sink
with value s = min+max

2

2 if value s satisfies the local optimality condition (up to some error
bound)

s ∈ [min(v(x1),v(x2))−ε ; min(v(x1),v(x2))+ε]

then s is close to the real value of x in the initial game

3 otherwise if s > min(v(x1),v(x2))+ε⇒ then the value of x is less than
s, go back to 1 with max = s.

SSG with feedback vertex set of size k

There are k vertices that, once removed, yields an acyclic SSG.

B even if k = 1, the number of cycles can be large

A A A A 0

Bisection algo with k = 1 : x is the vertex to remove to get an acyclic SSG

1 solve the acyclic SSG obtained when x is replaced by a sink
with value s = min+max

2

2 if value s satisfies the local optimality condition (up to some error
bound)

s ∈ [min(v(x1),v(x2))−ε ; min(v(x1),v(x2))+ε]

then s is close to the real value of x in the initial game

3 otherwise if s > min(v(x1),v(x2))+ε⇒ then the value of x is less than
s, go back to 1 with max = s.

SSG with feedback vertex set of size k

There are k vertices that, once removed, yields an acyclic SSG.

B even if k = 1, the number of cycles can be large

A A A A 0

Bisection algo with k = 1 : x is the vertex to remove to get an acyclic SSG

1 solve the acyclic SSG obtained when x is replaced by a sink
with value s = min+max

2

2 if value s satisfies the local optimality condition (up to some error
bound)

s ∈ [min(v(x1),v(x2))−ε ; min(v(x1),v(x2))+ε]

then s is close to the real value of x in the initial game

3 otherwise if s > min(v(x1),v(x2))+ε⇒ then the value of x is less than
s, go back to 1 with max = s.

SSG with feedback vertex set of size k

There are k vertices that, once removed, yields an acyclic SSG.

B even if k = 1, the number of cycles can be large

A A A A 0

Bisection algo with k = 1 : x is the vertex to remove to get an acyclic SSG

1 solve the acyclic SSG obtained when x is replaced by a sink
with value s = min+max

2

2 if value s satisfies the local optimality condition (up to some error
bound)

s ∈ [min(v(x1),v(x2))−ε ; min(v(x1),v(x2))+ε]

then s is close to the real value of x in the initial game

3 otherwise if s > min(v(x1),v(x2))+ε⇒ then the value of x is less than
s, go back to 1 with max = s.

SSG with feedback vertex set of size k

There are k vertices that, once removed, yields an acyclic SSG.

B even if k = 1, the number of cycles can be large

A A A A 0

Bisection algo with k = 1 : x is the vertex to remove to get an acyclic SSG

1 solve the acyclic SSG obtained when x is replaced by a sink
with value s = min+max

2

2 if value s satisfies the local optimality condition (up to some error
bound)

s ∈ [min(v(x1),v(x2))−ε ; min(v(x1),v(x2))+ε]

then s is close to the real value of x in the initial game

3 otherwise if s > min(v(x1),v(x2))+ε⇒ then the value of x is less than
s, go back to 1 with max = s.

SSG with feedback vertex set of size k

We can use the bisection algorithm on a k-dimensional space.

B Problem with the precision of the values → exact computation.

Theorem

A SSG with feedback vertex set of size k can be solved in time O(nk+1)

The method can be used to remove k vertices in any SSG and thus makes
other classes of SSG tractable.

SSG with feedback vertex set of size k

We can use the bisection algorithm on a k-dimensional space.

B Problem with the precision of the values → exact computation.

Theorem

A SSG with feedback vertex set of size k can be solved in time O(nk+1)

The method can be used to remove k vertices in any SSG and thus makes
other classes of SSG tractable.

SSG with feedback vertex set of size k

We can use the bisection algorithm on a k-dimensional space.

B Problem with the precision of the values → exact computation.

Theorem

A SSG with feedback vertex set of size k can be solved in time O(nk+1)

The method can be used to remove k vertices in any SSG and thus makes
other classes of SSG tractable.

SSG with feedback vertex set of size k

We can use the bisection algorithm on a k-dimensional space.

B Problem with the precision of the values → exact computation.

Theorem

A SSG with feedback vertex set of size k can be solved in time O(nk+1)

The method can be used to remove k vertices in any SSG and thus makes
other classes of SSG tractable.

Tanks for listening !

Questions ?

	Introduction to Simple Stochastic Games
	Fundamental properties of SSGs
	Almost acyclic SSGs

