

David Auger, **Pierre Coucheney**, Yann Strozecki Université de Versailles Saint-Quentin-en-Yvelines

Almost Acyclic Simple Stochastic Games

Jeudi 23 janvier, Journées GT Jeux

Simple stochastic game (SSG)

A Simple Stochastic Game (Shapley, Condon) is defined by a directed graph with :

- three sets of vertices V_{MAX} , V_{MIN} , V_{AVE} of outdegree 2
- two (or more) 'sink' vertices with rational values

Simple stochastic game (SSG)

A Simple Stochastic Game (Shapley, Condon) is defined by a directed graph with :

- three sets of vertices V_{MAX} , V_{MIN} , V_{AVE} of outdegree 2
- two (or more) 'sink' vertices with rational values

Two players : MAX and MIN, and <u>randomness</u>.

- player MAX wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.

A play consists in moving a <u>pebble</u> on the graph :

- player MAX wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.

On a MAX node player MAX decides where to go next.

A play consists in moving a <u>pebble</u> on the graph :

- player MAX wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.

On a AVE node the next vertex is randomly determined.

A play consists in moving a <u>pebble</u> on the graph :

- player MAX wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.

On a MIN node player MIN decides where to go next.

- player MAX wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.

- player MAX wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.

- player MAX wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.

- player MAX wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.

Strategies and values

General definition of a strategy σ for a player MAX :

 σ : partial play ending in $V_{\mathrm{MAX}} \longmapsto$ probability distribution on outneighbours

General definition of a strategy σ for a player MAX :

 σ : partial play ending in $V_{\mathrm{MAX}} \longmapsto$ probability distribution on outneighbours

The **value** of a vertex *x* is the best expected value of a sink that MAX can guarantee starting from *x* :

 $v(x) = \sup_{\substack{\sigma \text{ strategy} \\ \text{for MAX}}} \inf_{\substack{\tau \text{ strategy} \\ \text{for MIN}}} \underbrace{\mathbb{E}_{\sigma,\tau} \text{ (value of the sink reached | game starts in x)}}_{v_{\sigma,\tau}(x)}$

General definition of a strategy σ for a player MAX :

 σ : partial play ending in $V_{\mathrm{MAX}} \longmapsto$ probability distribution on outneighbours

The **value** of a vertex *x* is the best expected value of a sink that MAX can guarantee starting from *x* :

 $v(x) = \sup_{\substack{\sigma \text{ strategy} \\ \text{for MAX}}} \inf_{\substack{\tau \text{ strategy} \\ \text{for MIN}}} \underbrace{\mathbb{E}_{\sigma,\tau} \text{ (value of the sink reached | game starts in x)}}_{v_{\sigma,\tau}(x)}$

Problem : given a game and a vertex, compute the value of the vertex.

General definition of a strategy σ for a player MAX :

 σ : partial play ending in $V_{\mathrm{MAX}} \longmapsto$ probability distribution on outneighbours

The **value** of a vertex *x* is the best expected value of a sink that MAX can guarantee starting from *x* :

 $\nu(x) = \sup_{\substack{\sigma \text{ strategy} \\ \text{for MAX}}} \inf_{\substack{\tau \text{ strategy} \\ \text{for MIN}}} \underbrace{\mathbb{E}_{\sigma,\tau} \text{ (value of the sink reached | game starts in x)}}_{\nu_{\sigma,\tau}(x)}$

Problem : given a game and a vertex, compute the value of the vertex.

Decision problem : v(x) > 0.5?

They generalize Markov decision processes.

They generalize Markov decision processes.

They are an example of a problem in NP \cap coNP not known to be in P.

Simpler game : Stopping SSGs

A SSG is stopping if for all strategies, the game reaches a sink vertex almost surely.

Simpler game : Stopping SSGs

A SSG is stopping if for all strategies, the game reaches a sink vertex almost surely.

Theorem (Condon 89)

For every SSG G, there is a polynomial-time computable SSG G' such that

- G' is stopping
- size of G' = poly(size of G)

• for all vertices x, $v_{G'}(x) > \frac{1}{2}$ if and only if $v_G(x) > \frac{1}{2}$

Simpler game : Stopping SSGs

A SSG is stopping if for all strategies, the game reaches a sink vertex almost surely.

Theorem (Condon 89)

For every SSG G, there is a polynomial-time computable SSG G' such that

- G' is stopping
- size of G' = poly(size of G)
- for all vertices x, $v_{G'}(x) > \frac{1}{2}$ if and only if $v_G(x) > \frac{1}{2}$

Simpler strategies

To compute values we can restrict our strategies to be

- pure : deterministic
- memoryless : does not depend on the entire history
- stationary : does not depend on time step

Simpler strategies

To compute values we can restrict our strategies to be

- <u>pure</u> : deterministic
- memoryless : does not depend on the entire history
- stationary : does not depend on time step

We call them **positional strategies** for short.

Theorem (Condon 89)

For all vertices x,

$$\begin{aligned} v(x) &= \sup_{\sigma \text{ general}} \inf_{\tau \text{ general}} v_{\sigma,\tau}(x) \\ &= \inf_{\tau \text{ general}} \sup_{\sigma \text{ general}} v_{\sigma,\tau}(x) \\ &= \max_{\sigma \text{ positional}} \min_{\tau \text{ positional}} v_{\sigma,\tau}(x) \\ &= \min_{\tau \text{ positional}} \max_{\sigma \text{ positional}} v_{\sigma,\tau}(x) \end{aligned}$$

Fix σ , τ positional strategies.

- if $x \in MAX$, $v_{\sigma,\tau}(x) = v_{\sigma,\tau}(\sigma(x))$
- if $x \in MIN$, $v_{\sigma,\tau}(x) = v_{\sigma,\tau}(\tau(x))$
- if $x \in AVE$, $v_{\sigma,\tau}(x) = \frac{1}{2}v_{\sigma,\tau}(x_1) + \frac{1}{2}v_{\sigma,\tau}(x_2)$
- if $x \in \text{SINK}$, $v_{\sigma,\tau}(x) \in [0,1]$

This amounts to solve a linear system.

The switch operation

x is a MIN vertex and $v_{\sigma,\tau}(x) = v_{\sigma,\tau}(x_1) > v_{\sigma,\tau}(x_2)$

switching τ at $x : \tau'(x) = x_2$ and equal to τ elsewhere.

The switch operation

x is a MIN vertex and $v_{\sigma,\tau}(x) = v_{\sigma,\tau}(x_1) > v_{\sigma,\tau}(x_2)$

switching τ at $x : \tau'(x) = x_2$ and equal to τ elsewhere.

Such a switch is **profitable** for MIN :

- for all $y, v_{\sigma,\tau'}(y) \le v_{\sigma,\tau}(y)$
- in particular $v_{\sigma,\tau'}(x) < v_{\sigma,\tau}(x)$

The switch operation

x is a MIN vertex and $v_{\sigma,\tau}(x) = v_{\sigma,\tau}(x_1) > v_{\sigma,\tau}(x_2)$

switching τ at $x : \tau'(x) = x_2$ and equal to τ elsewhere.

Such a switch is **profitable** for MIN :

- for all $y, v_{\sigma,\tau'}(y) \le v_{\sigma,\tau}(y)$
- in particular $v_{\sigma,\tau'}(x) < v_{\sigma,\tau}(x)$

Optimality condition : no switch .

Algorithm to find an optimal strategy against σ : keep switching.

Fix σ only.

- $\max \sum_{x \in \text{MIN}} v_{\sigma}(x)$
- if $x \in MAX$, $v_{\sigma}(x) = v_{\sigma}(\sigma(x))$
- if $x \in MIN$, $v_{\sigma}(x) \le v_{\sigma}(x_1)$ and $v_{\sigma}(x) \le v_{\sigma}(x_2)$
- if $x \in AVE$, $v_{\sigma}(x) = \frac{1}{2}v_{\sigma}(x_1) + \frac{1}{2}v_{\sigma}(x_2)$
- if $x \in SINK$, $v_{\sigma}(x) \in [0, 1]$

This amounts to solve a linear program.

Strategy improvement algorithms

The strategy improvement algorithm a.k.a Hoffman-Karp algorithm (1966, MDP context) is

- choose τ_0 and let $\sigma_0 = \sigma(\tau_0)$ (best response)
- **2** while (σ_k, τ_k) is not optimal, obtain τ_{k+1} by switching τ_k ; let

 $\sigma_{k+1} = \sigma(\tau_{k+1})$

based on :

Lemma

 $v_{\sigma_{k+1},\tau_{k+1}} < v_{\sigma_k,\tau_k}$ as long as (σ_k,τ_k) is not optimal.

Strategy improvement algorithms

The strategy improvement algorithm a.k.a Hoffman-Karp algorithm (1966, MDP context) is

- choose τ_0 and let $\sigma_0 = \sigma(\tau_0)$ (best response)
- **2** while (σ_k, τ_k) is not optimal, obtain τ_{k+1} by switching τ_k ; let

 $\sigma_{k+1} = \sigma(\tau_{k+1})$

based on :

Lemma

$$v_{\sigma_{k+1},\tau_{k+1}} < v_{\sigma_k,\tau_k}$$
 as long as (σ_k,τ_k) is not optimal.

Theorem

The HK algorithm makes at most $O(2^n/n)$ iterations

Unfortunately, this can take exponential time [Condon, Friedman].

Strategy improvement algorithms

The strategy improvement algorithm a.k.a Hoffman-Karp algorithm (1966, MDP context) is

- choose τ_0 and let $\sigma_0 = \sigma(\tau_0)$ (best response)
- **2** while (σ_k, τ_k) is not optimal, obtain τ_{k+1} by switching τ_k ; let

 $\sigma_{k+1} = \sigma(\tau_{k+1})$

based on :

Lemma

$$v_{\sigma_{k+1},\tau_{k+1}} < v_{\sigma_k,\tau_k}$$
 as long as (σ_k,τ_k) is not optimal.

Theorem

The HK algorithm makes at most $O(2^n/n)$ iterations

Unfortunately, this can take exponential time [Condon, Friedman]. When the algorithm ends, say at (σ^*, τ^*), each one plays optimally :

$$v_{\sigma^*,\tau^*} = \max_{\sigma \text{ pos}} \min_{\tau \text{ pos}} v_{\sigma,\tau} = \min_{\tau \text{ pos}} \max_{\sigma \text{ pos}} v_{\sigma,\tau}$$

Solving an acyclic SSG in linear time

No cycle : compute the values backward from the sinks in time O(n).

Max-acyclic game : each MAX vertex has at most one outgoing edge in a cycle.

Max-acyclic game : each MAX vertex has at most one outgoing edge in a cycle.

Assume the graph is strongly connected once sinks are removed \Rightarrow one outneighbour of each MAX vertex is a sink.

Max-acyclic game : each MAX vertex has at most one outgoing edge in a cycle.

Assume the graph is strongly connected once sinks are removed \Rightarrow one outneighbour of each MAX vertex is a sink.

If not, compute the strongly connected components :

Max-acyclic game : each MAX vertex has at most one outgoing edge in a cycle.

Assume the graph is strongly connected once sinks are removed \Rightarrow one outneighbour of each MAX vertex is a sink.

If not, compute the strongly connected components :

In the following, all SSGs are assumed strongly connected.

Theorem

The strategy improvement algorithm (MAX switches + MIN responds optimally) starting with open MAX vertices performs at most $|V_{MAX}|$ switches.

Theorem

The strategy improvement algorithm (MAX switches + MIN responds optimally) starting with open MAX vertices performs at most $|V_{MAX}|$ switches.

Need to compute optimal response $\Rightarrow O(n^4 |V_{MAX}|)$.

Theorem

The strategy improvement algorithm (MAX switches + MIN responds optimally) starting with open MAX vertices performs at most $|V_{MAX}|$ switches.

Need to compute optimal response $\Rightarrow O(n^4 |V_{MAX}|)$.

proof based on : once a MAX vertex is closed, it is for ever.

Theorem

The strategy improvement algorithm (MAX switches + MIN responds optimally) starting with open MAX vertices performs at most $|V_{MAX}|$ switches.

Need to compute optimal response $\Rightarrow O(n^4 | V_{MAX} |)$.

proof based on : once a MAX vertex is closed, it is for ever.

Let *x* be a MAX vertex and *s* its sink with value v(s). Recall that $v_{\sigma_k,\tau_k}(x)$ is increasing.

Theorem

The strategy improvement algorithm (MAX switches + MIN responds optimally) starting with open MAX vertices performs at most $|V_{MAX}|$ switches.

Need to compute optimal response $\Rightarrow O(n^4 | V_{MAX} |)$.

proof based on : once a MAX vertex is closed, it is for ever.

Let *x* be a MAX vertex and *s* its sink with value v(s). Recall that $v_{\sigma_k,\tau_k}(x)$ is increasing.

x is switched to closed at step $k \Rightarrow v(s) < v_{\sigma_k,\tau_k}(x)$.

If the game is also MIN-acyclic, the same argument holds for computing the best reponse of MIN as follows :

- start with all MIN vertices open.
- 2 while the strategy is not optimal, close all switchable MIN vertices.

If the game is also MIN-acyclic, the same argument holds for computing the best reponse of MIN as follows :

- I start with all MIN vertices open.
- 2 while the strategy is not optimal, close all switchable MIN vertices.

Need to compute the values $\Rightarrow O(n^3 |V_{MIN}| |V_{MAX}|)$.

1-cycle SSG

With only one cycle the game is both Max-acyclic and Min-acyclic.

1-cycle SSG

With only one cycle the game is both Max-acyclic and Min-acyclic.

In linear time, each of these assumptions can be checked : the optimal strategy

- A1 is closed at every vertex
- A2 contains at least an open MAX vertex
- A3 contains at least an open MIN vertex

With only one cycle the game is both Max-acyclic and Min-acyclic.

In linear time, each of these assumptions can be checked : the optimal strategy

- A1 is closed at every vertex
- A2 contains at least an open MAX vertex
- A3 contains at least an open MIN vertex

algo for checking A2 :

- solve the acyclic SSG obtained when an arbitrary MAX vertex is fixed to open
- if A2 is true, the next open MAX vertex (say x) is also open in the 1-cycle SSG
- So check it by solving the acyclic SSG forced to be open at *x*.

Based on the previous algo, by opening a vertex next to each fork vertex :

Theorem

A k-cycles SSG can be solved in time $O(n4^k k!)$

Based on the previous algo, by opening a vertex next to each fork vertex :

Theorem A k-cycles SSG can be solved in time $O(n4^k k!)$

To be compared to the strategy improvment algorithm : $O(n^5 2^k)$

There are *k* vertices that, once removed, yields an acyclic SSG.

There are *k* vertices that, once removed, yields an acyclic SSG.

 \bigwedge even if k = 1, the number of cycles can be large

There are *k* vertices that, once removed, yields an acyclic SSG.

 \bigwedge even if k = 1, the number of cycles can be large

<u>Bisection algo with k = 1</u>: *x* is the vertex to remove to get an acyclic SSG

• solve the acyclic SSG obtained when *x* is replaced by a sink with value $s = \frac{min+max}{2}$

There are *k* vertices that, once removed, yields an acyclic SSG.

 \bigwedge even if k = 1, the number of cycles can be large

Bisection algo with k = 1: x is the vertex to remove to get an acyclic SSG

- solve the acyclic SSG obtained when *x* is replaced by a sink with value $s = \frac{min+max}{2}$
- if value s satisfies the local optimality condition (up to some error bound)

 $s \in [\min(v(x_1), v(x_2)) - \epsilon; \min(v(x_1), v(x_2)) + \epsilon]$

then *s* is close to the real value of *x* in the initial game

There are *k* vertices that, once removed, yields an acyclic SSG.

 \wedge even if k = 1, the number of cycles can be large

Bisection algo with k = 1: x is the vertex to remove to get an acyclic SSG

- solve the acyclic SSG obtained when *x* is replaced by a sink with value $s = \frac{min+max}{2}$
- if value s satisfies the local optimality condition (up to some error bound)

 $s \in [\min(v(x_1), v(x_2)) - \epsilon; \min(v(x_1), v(x_2)) + \epsilon]$

then *s* is close to the real value of *x* in the initial game

③ otherwise if *s* > min($v(x_1), v(x_2)$) + *e* ⇒ then the value of *x* is less than *s*, go back to 1 with *max* = *s*.

 \wedge Problem with the precision of the values \rightarrow exact computation.

 \wedge Problem with the precision of the values \rightarrow exact computation.

Theorem

A SSG with feedback vertex set of size k can be solved in time $O(n^{k+1})$

 \wedge Problem with the precision of the values \rightarrow exact computation.

Theorem

A SSG with feedback vertex set of size k can be solved in time $O(n^{k+1})$

The method can be used to remove *k* vertices in any SSG and thus makes other classes of SSG tractable.

Tanks for listening!

Questions?