Problem	Install	Simple queue	Network	Schedulir
	Event Base	d Markovian Simu	lation	
	Event Buset			
	TI	ne $\Psi - 3$ software		

Benjamin.Briot@inria.fr Jean-Marc.Vincent@imag.fr

Laboratoire d'Informatique de Grenoble, Inria team MESCAL University Grenoble-Alpes, France

Marmote Workshop, Montpellier 2015, May 29

Problem	Install	Simple queue	Network	Scheduling
		Outline		
_				

- Generation of Samples of Markov Chains
- 2 How to install $\Psi = 3$

Simple trajectory

- Simple trajectory of a network
- 5 Scheduling

Install

Simple queue

Network

Scheduling

Events and Poisson Systems

Events and Poisson Systems

Scheduling

Events and Poisson Systems

Events and Poisson Systems

 \Rightarrow monotone events

Events and Poisson Systems

Events and Poisson Systems

 \Rightarrow monotone events

Events and Poisson Systems

 \Rightarrow monotone events

Events and Poisson Systems

Event Modelling

Multidimensional state space : $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_K$ with $\mathcal{X}_i = \{0, \cdots, C_i\}$.

Event e :

- \rightsquigarrow transition function $\Phi(., e)$; (skip rule)
- \sim Poisson process λ_e

Problem

Install

Simple queue

Network

Scheduling

Event modelling : Uniformization

$$\Lambda = \sum_{e} \lambda_{e} \text{ and } \mathbb{P}(event \ e) = \frac{\lambda_{e}}{\Lambda};$$

Trajectory : $\{e_n\}_{n \in \mathbb{Z}}$ i.i.d. sequence.

⇒ Homogeneous Discrete Time Markov Chain [Bremaud 99]

$$X_{n+1} = \Phi(X_n, e_{n+1}).$$

Generation among a small finite space \mathcal{E} : $\mathcal{O}(1)$

Network

Ψ software

e psi.gforge.inria.fr/dokuwiki/do	ku.php?id=start		
es plus visités 👻 🛅 À la une 👻	🛐 Passeur de scie 👻 🎹 LeMonde 🛛 patates 🚟 MIT 🔤 music 🔚 tv 🔝 mto 🚺 telerama 🔮 SU 💈 Jain2		
	🔒 Login		
	Q		
Perfect Simulator	Recent changes Media Manager Sitemap		
You are here: start			
A	start		
Accueil	Acquail		
PSI3: Event based	Accueil		
 documentation examples 	What is PSI?		
installation	Psi, acronym of Perfect Simulator, is a framework designed to sample trajectories of large Markov		
PSI1: Matrix based	chains with various methods. Markov chains are given as a transition matrix or as a Poisson system		
▶ examples	based on events and actions on a state space. The main objective is to provide exact (unbiaised)		
 documentation 	samples of the steady-state of the chain, that could be used more efficiently by external statistical		
 installation 			
FAQ	Overview		
Publications	This framework is divided in two independent branches. PSI1 providing a simulation kernel for		
Draft	continuous or discrete time Markov chains specified in a matrix format. And PSI3 is an equivalent		
	based on event descriptions and more dedicated to queuing networks.		
	Main features		
	 Accepts discrete and continuous time models 		
	 Accepts discrete and continuous time models Generates samples according the stationary distribution with 		
	Accepte discrete and continuous time models Generates samples according the stationary distribution with Simple path sampling: MonteCarlo (trasient trajectories)		

LIG

Software architecture

Aim of the software

- finite capacity queueing network simulator
- rare events estimation (rejection, blocking,...)
- statistical guarantees (independence of samples)

\Rightarrow Simulation kernel

- open source (C, GPL licence)
- extensible library of events
- multiplatforms (linux (debian), mac OSX,...)

Problem

Install

Simple queue

Network

Scheduling

Network

Workflow

Simulation kernels

Forward sampling trajectories Backward sampling Monotone Envelopes Envelopes and split

Network

Scheduling

Network

Scheduling

Network

Scheduling

Network

Scheduling

Problem	Install	Simple queue	Network	Scheduling
		Modeling		
Syntax				

Queues: - id: [para

. . .

- id: [id_value]
[parameter_1]: [parameter_2_value]

Example		
Queues:	anenej	
min:	0	
max:	50	
- id:	queue2	
min:	0	
max:	80	

G

Modeling

Short list

ext_arrival_reject One client comes from outside to the listed queues with priorities (the list order). The client is rejected if not possible.

ext_departurer One client lives the specified queue.

- routing_n_queues_reject Select a client from the listed queues and route to another queue. Client is rejected if routing is not possible.
- routage_nfile_bloc Select a client from the listed queues and route to another queue. Client stays on the origin queue if routing is not possible.
 - JSQ_rejet Select a client from the listed queues and route to another queue with the least clients. Client is rejected if routing is not possible.

Problem	Install	Simple queue	Network	Scheduling
		Modeling		
Sy	ntax			
Ev	ents: - id: [parameter_1]: 	[id_value] [parameter_2_value]		

Evenus:	
- id:	evt1
type:	Default\$ext_arrival_reject
rate:	1.6
from:	[outside]
to:	[queue1, drop]
- id:	evt2
type:	Default\$ext_departure
rate:	2.0
from:	[queue1]
to:	[drop]

Network

Simulation

Single trajectory sampling (Monte Carlo)

- Simple forward
- Simple forward parallel

Perfect sampling (Propp & Wilson) and extensions

- Bakward Monotone
- Bakward Envelope
- Bakward Envelope Splitting

Network

Problem

(Install)

Scheduling

Network

Scheduling

Installation

- Unix-like operating system: GNU/Linux, MacOSX
- C/C++ compiler
 - GCC >= 4.4 (for OpenMP 3.0 support)
- CMake > 3.0

Problem Install Simple queue Network Scheduling

PSI3 will be installed in /usr/local.

In the source directory:

cmake . make sudo make install

Problem

Simple queue

Network

Installation

Installation destination can be changed through CMAKE_INSTALL_PREFIX. For instance, installing in \$HOME/psi3:

In the source directory:

```
DESTDIR="$HOME/psi3"
cmake -D CMAKE_INSTALL_PREFIX="$DESTDIR" .
make
sudo make install
```

Then, you can update your Path to run PSI3:

In shell:

export PATH="\$DESTDIR/bin:\$PATH"

Installation

Notes for mac user

- Although PSI3 can compile and works with clang, our advise is to use gcc.
- If you don't have gcc, you can install it through homebrew (http://brew.sh/)
- If notice CMAKE still use clang. Check the value of CMAKE_C_COMPILER. CCMAKE offers a graphical front-end that is often a good choice to get a good overview of variables used by CMAKE.

Problem	Install	Simple queue	Network	Scheduling
		Outline		
0	Generation of Samples of	Markov Chains		
2	low to install $\Psi = 3$			
3 5	Simple trajectory			
4 5	Simple trajectory of a net	work		
	Cohoduling			
5 8	scneauling			

Problem	Install	Simple queue	Network	Scheduling
		Example		

1 Queue		
- id: min:	queue1 0	
max:	50	

G

		Example		
Problem	Install	Simple queue	Network	Scheduling

2 Events

- ext_arrival_reject
- ext_departure

Event 1

- id:	evt1
type:	Default\$ext_arrival_reject
rate:	1.6
from:	[outside]
to:	[queuel, drop]

G

Event 2

- id:	evt2
type:	Default\$ext_departure
rate:	2.0
from:	[queue1]
to:	[drop]

G

model.yaml	
Queues:	
- id:	queuel
min:	0
max:	50
Events:	
- id:	evt1
type:	Default\$ext_arrival_reject
rate:	1.6
from:	[outside]
to:	[queue1, drop]
- id:	evt2
type:	Default\$ext_departure
rate:	2.0
from:	[queue1]
to:	[drop]

Install

Simple queue)

Network

Example

Simpleforward

To generate a trajectory of this model.

simpleforward.yaml

Method:

simpleforward

Sample will have one million states
TrajectoryLength: 1000000

Initial states of queues.
"~" means to let PSI3 choose it randomly.
InitialState : ~

Problem

Install

Simple queue)

Network

Scheduling

Example

param.yaml

```
# Random generator seed. "~" for random seed
Seed: 7
# Configuration of model
PrintModel: Yes
# Parameters of simulation
PrintParam: Yes
# Total time of the simulation from begin to end
PrintSimulationTime: Yes
```


Install

Simple queue)

Network

Scheduling

Execution

```
> psi3_unix -m simple-queue.yaml -p param.yaml
-k simpleforward.yaml
Begin user files compilation...
OK
Begin simulation...
Number total of transition calls: 1000000
# Total simulation time : 297.071000 milli-seconds
End of simulation
```


. . .

Install

Simple queue)

Network

Scheduling

output.txt (troncated)

```
# PSI3 INFO:
# version: 1.3.0
# build type: DEBUG
# C compiler: GNU
# compiler options: -Werror -Wall -rdynamic
# General Param:
# seed: 7
# Method:
# TrajectoryLength: 1000
# InitialState: 24
```


Network

Scheduling

output.txt (truncated)

Output data: # Na 24 23 1 1 2 1 22 3 0 23 4 0 24 5 1 23 . . . 999998 1 0 999999 0 1 # Number total of transitions calls: 999999 # Total simulation time: 233.257000 milli-seconds

Problem	n Install	Simple queue	Network	Scheduling
		Example		
	With a simple script R a http://psi.gforge.inria.fr/o	vailable on this page: dokuwiki/doku.php?id=psi3:exa	mples	
	R output			
	20- Viv	*- - *- -		

Frequency 20

States

W

Trajectory (length: 300)

G

States

Problem	Install	Simple queue	Network	Scheduling
		Outline		
0	Generation of Samples o	f Markov Chains		
2	How to install $\Psi - 3$			
3	Simple trajectory			
4	Simple trajectory of a ne	twork		
	Schoduling			
	Schedding			

Queues:	
- 1d: queuel	
min: 0	
max: 50	
- id: queue2	
min: 0	
max: 50	

2 Events

- ext_arrival_reject
- routing_n_queues_reject
- ext_departure

Scheduling

Problem	Install	Simple queue	Network	Scheduling

Event 1	
- id:	evt1
type:	Default\$ext_arrival_reject
rate:	1.6
from:	[outside]
to:	[queue1, drop]

Problem	Install	Simple queue	Network	Scheduling

Event 2	
- id:	evt2
type:	Default\$routing_n_queues_reject
rate:	1.8
from:	[queue1]
to:	[queue2]

Problem	Install	Simple queue	Network	Scheduling

Event 3	
- id:	evt2
type:	Default\$ext_departure
rate:	2.0
from:	[queue1]
to:	[drop]

-			a.,			
Р	r				m	
		-	-			

Example

BackwardMonotone

To sample 1000 steady states of the system..

method.yaml

Simulation algorithm
Method: backwardmonotone

Sample number
SampleNumber: 1000

Number of Antithetic variable
Antithetic: 1

Doubling period (Yes or No)
Doubling: Yes

Size of maximal trajectory
TrajectoryMax: 3000000

Install

Simple queue

(Network)

Scheduling

param.yaml

```
# Random generator seed. "~" for random seed
Seed: 7
# Configuration of model
PrintModel: Yes
# Parameters of simulation
PrintParam: Yes
# Total time of the simulation from begin to end
PrintSimulationTime: Yes
```


Problem

Simple queue

Execution

```
> psi3_unix -m simple-queue.yaml -p param.yaml
-k simpleforward.yaml
Begin user files compilation...
OK
Begin simulation...
InitMemoryLength: automatic default value (1000)
# Total simulation time: 287.465000 milli-seconds
End of simulation
```


output.txt (truncated)

```
# PSI3 INFO:
# version: 1.3.0
# build type:
 C compiler: GNU
#
# compiler options: -Werror -Wall -rdynamic
  General Param:
#
  seed: 3
#
 Method:
#
#
  SampleNumber: 1000
  TrajectoryMax: 3000000
#
  Antithetic: 1
#
#
  Doubling: 1
   InitMemoryLength: 1000
#
. . .
```


output.txt (truncated)

# Output data:		
0 14 7 - 10		
1 2 8 - 11		
2 2 3 - 11		
3 3 4 - 11		
996 0 3 -	10	
997 31 -	10	
998 6 0 -	10	
999 15 1 -	10	
# Total simulat	ion time: 287.465000 m	milli-seconds

Example

With a simple script R available on this page: http://psi.gforge.inria.fr/dokuwiki/doku.php?id=psi3:examples

R output

Problem	Install	Simple queue	Network	Scheduling
		Outline		
1	Generation of Samples	of Markov Chains		
2	How to install $\Psi - 3$			
3	Simple trajectory			
4	Simple trajectory of a ne	etwork		
5	Scheduling			

Two kind of event

- JSQ_rejet
- ext denarture

G

model.yaml (1)	
Queues:	
- id:	queue0
min:	0
max:	10
- id:	queuel
min:	0
max:	10
- id:	queue2
min:	0
max:	10
Events:	
- id:	evt1
type:	Default\$JSQ_rejet
rate:	5.0
from:	[outside]
to:	[queue0,queue1,queue2,drop]

L I G

model.yaml (2)	
- id:	evt2
type:	Default\$ext_departure
rate:	2.0
from:	[queue0]
to:	[drop]
- id:	evt3
type:	Default\$ext_departure
rate:	2.0
from:	[queue1]
to:	[drop]
- id:	evt4
type:	Default\$ext_departure
rate:	2.0
from:	[queue2]
to:	[drop]

Probl	lem Install	Simple queue	Network	Scheduling
		Example		
	BackwardMonotone			
	 To sample 1000 stea User defined output to 	dy states of the system function to print max and min of q	ueues	
	method.yaml			
	<pre># Simulation algo Method:</pre>	rithm backwardmonotone		
	<pre># Sample number SampleNumber:</pre>	1000		
	<pre># Doubling period Doubling:</pre>	(Yes or No) Yes		
	<pre># Size of maximal TrajectoryMax:</pre>	trajectory 3000000		
	MyLib: OutputFct:	[lib/outputfct] MyLib\$output_minmax		I G

```
Scheduling
Problem
                 Install
                                  Simple queue
                                                      Network
                                  Example
    void output_minmax (FILE * f, int **state,
                          int sample, int *log2stop_time)
       int i, n, max = 0, min = 0;
       fprintf (f, "%d,\t", sample);
       for (n = 0; n < nb AV; n++) {
          min = state[n][0];
          max = state[n][0];
          for (i = 1; i < nb_queues; i++) {</pre>
             max = max2 (max, state[n][i]);
             min = min2 (min, state[n][i]);
          fprintf (f, "%d\t%d\n", min, max);
       }
```


param.yaml

```
# Random generator seed. "~" for random seed
Seed: 7
# Configuration of model
PrintModel: Yes
# Parameters of simulation
PrintParam: Yes
# Total time of the simulation from begin to end
PrintSimulationTime: Yes
```


Problem

Example

Execution

```
> psi3_unix -m simple-queue.yaml -p param.yaml
-k simpleforward.yaml
Begin user files compilation...
OK
Begin simulation...
InitMemoryLength: automatic default value (1000)
# Total simulation time: 73.659000 milli-seconds
End of simulation
```


οι	ιtpι	ut.txt	(truncated)				
#	Ou	tput	data:				
0	2	3					
1	3	4					
2	1	2					
3	2	3					
4	1	2					
5	2	4					
• •	••						
99	95	2	2				
99	96	3	4				
99	97	0	0				
99	98	1	3				
99	99	0	2				
#	To	tal	simulation	time:	73.659000	milli-seconds	

Event Based Markovian Simulation, 51 / 51