Oracle skipping and applications to Jackson networks

Rémi Varloot, Ana Bušić and Anne Bouillard

8 octobre 2013 - ANR MARMOTE

(1) Model: Markov automaton

(2) Oracle skipping
(3) Main result
(4) Application to Jackson networks

- Tandem of two queues
- Performances

Markov automaton

Markov automaton

$\mathcal{A}=(\mathcal{S}, A, D, \cdot)$, where

- \mathcal{S} is a finite state space;
- A is a finite alphabet (the set of events);
- D is a probability distribution over A;
- $\cdot: \mathcal{S} \times A \rightarrow \mathcal{S} ;(s, a) \mapsto s \cdot a$ is an action by the letters of A on the states of \mathcal{S}.
$u[i]$: prefix of u of length i. For $S \subseteq \mathcal{S}, S \cdot a=\{s \cdot a \mid s \in S\}$.
Bounding chain: $S \cdot a \subseteq S \circ a$

$D(a)=D(b)=D(c)=1 / 3$
Markov chain generated by \mathcal{A} : let $s \in \mathcal{S}$ and $u \sim D^{\otimes \mathbb{N}}$.

$$
X_{n}(s)=s \cdot u[i] .
$$

Coupling in Markov automata

Grand coupling

$$
\mathcal{X}=(X(s))_{s \in \mathcal{S}} \quad \mathcal{X}_{i}=\mathcal{S} \cdot u[i] .
$$

Coupling word

u such that $|\mathcal{S} \cdot u|=1$.
Example: bb
If there exists a coupling word, then the algorithm terminates with probability 1.

Coupling from the past

Algorithm 1: Coupling from the past

for $s \in \mathcal{S}$ do $S(s) \leftarrow s$ repeat
Draw a $\sim D$;
for $s \in \mathcal{S}$ do $T(s) \leftarrow S(s \cdot a)$;
$S \leftarrow T$;
until $|S(\mathcal{S})|=1$;
return the element of $S(\mathcal{S})$

- τ_{b} is the backward coupling time (number of steps)
- If τ is the (forward) coupling of the chain, then $\tau_{\text {mix }} \leq \mathbb{E}[\tau]=\mathbb{E}\left[\tau_{b}\right]$

$$
t_{\text {mix }}=\min \left\{i \mid \max _{x \in \mathcal{S}}\left\|\rho_{i}(x)-\pi\right\|_{T V} \leq 1 / 4\right\}
$$

with $\|\rho-\pi\|_{T V}=\max _{B \subseteq \mathcal{S}}|\rho(B)-\pi(B)|$.

(1) Model: Markov automaton

(2) Oracle skipping

4 Application to Jackson networks

- Tandem of two queues
- Performances

Active and passive events

Let $B \subseteq \mathcal{S}$ and $a \in A$.

Active event

The event a is active for B if $B \circ a \neq B$.

Passive event

The event a is passive for B if $B \circ a=B$.

S	active	passive
$\{1,2,3\}$	b	a, c
$\{1,2\}$	a, b	c
$\{2,3\}$	b, c	a
$\{1\}$	b, c	a
$\{2\}$	a, c	b
$\{3\}$	a, b	c

Active and passive events

Let $B \subseteq \mathcal{S}$ and $a \in A$.

Active event

The event a is active for B if $B \circ a \neq B$.

Passive event

The event a is passive for B if $B \circ a=B$.

New distribution D_{i} at step i
 $P_{D_{i}}\left(u_{i}=a\right)=P_{D}\left(u_{i}=a \mid a\right.$ is active $)$

In state $\{1,2\}, P(a)=1 / 2, P(b)=1 / 2$ and $P(c)=0$.

Hard on CFTP

Hard on CFTP

Hard on CFTP

Special symbol $\#$

Let $A_{\sharp}=A \cup\{\sharp\}$.

- The new symbol \sharp has no effect: $\forall B \subseteq \mathcal{S}, B \cdot \sharp=B$.
- If D is a distribution over A and $p \in(0,1)$, then D_{p} is a distribution over A_{\sharp} such that
- $D_{\rho}(\nexists)=p$
- and $D_{p}(a)=(1-p) D(a)$.
\sharp is always considered as active:
- $A c t_{B}=\{a \in A \mid B \circ a \neq B\} \cup\{\sharp\}$
- Pas $_{B}=\{a \in A \mid B \circ a=B\}$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

$$
\begin{aligned}
& u=a a c b c a c a a c a c b \\
& c(u)=
\end{aligned}
$$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A c t^{B}{ }_{\mathcal{S o u}[\mathrm{i}]}$.
$c^{B}(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in A c t_{\phi(i-1)}^{B}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}^{B}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

$$
\begin{aligned}
& u=a a c b c a c a a c a c b \\
& c(u)=
\end{aligned}
$$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

Lemma

$$
c(u \cdot v)=c(u) \cdot c^{S o u}(v)
$$

$u=$ aacbcacaacacb
$c(u)=$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

Lemma

$$
c(u \cdot v)=c(u) \cdot c^{S o u}(v)
$$

$u=$ aacbcacaacacb
$c(u)=$
Act $=\{b\}$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

Lemma

$$
c(u \cdot v)=c(u) \cdot c^{\mathcal{S} \circ u}(v)
$$

$u=$ aacbcacaacacb
$c(u)=b$
Act $=\{a, b\}$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

Lemma

$$
c(u \cdot v)=c(u) \cdot c^{\mathcal{S} \circ u}(v)
$$

$u=$ aacbcacaacacb
$c(u)=b$
Act $=\{a, b\}$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

Lemma

$$
c(u \cdot v)=c(u) \cdot c^{\mathcal{S} \circ u}(v)
$$

$u=$ aacbcacaacacb
$c(u)=b a$
Act $=\{a, b, c\}$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

Lemma

$$
c(u \cdot v)=c(u) \cdot c^{\mathcal{S} \circ u}(v)
$$

$u=$ aacbcacaacacb
$c(u)=b a c$
Act $=\{b, c\}$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

Lemma

$$
c(u \cdot v)=c(u) \cdot c^{\mathcal{S} \circ u}(v)
$$

$u=$ aacbcacaacacb
$c(u)=b a c$
Act $=\{b, c\}$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

Lemma

$$
c(u \cdot v)=c(u) \cdot c^{\mathcal{S} \circ u}(v)
$$

$u=$ aacbcacaacacb
$c(u)=b a c c$
Act $=\{a, b, c\}$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

Lemma

$$
c(u \cdot v)=c(u) \cdot c^{\mathcal{S} \circ u}(v)
$$

$u=$ aacbcacaacacb
$c(u)=$ bacca
Act $=\{a, b\}$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

Lemma

$$
c(u \cdot v)=c(u) \cdot c^{\mathcal{S} \circ u}(v)
$$

$u=$ aacbcacaacacb
$c(u)=$ bacca
Act $=\{a, b\}$

Collapsing a word $=$ removing its inactive letters

Let $u \in A^{n}, n \in \mathbb{N} \cup\{\infty\}$ and $A c t_{i}=A^{c t} t_{\mathcal{S} \circ u[i]}$.
$c(u)=u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where

- $\phi(i)=\min \left\{j>\phi(i-1) \mid u_{j} \in \operatorname{Act}_{\phi(i-1)}\right\}$ and $\phi(0)=0$;
- $\ell=\min \left\{i \mid \forall j \in[\phi(i)+1, k], u_{j} \in \operatorname{Pas}_{\phi(i)}\right\}$

The collapsing is idempotent; $c(u)$ is called a collapsed word.

Lemma

$$
c(u \cdot v)=c(u) \cdot c^{\mathcal{S} \circ u}(v)
$$

$u=$ aacbcacaacacb
$c(u)=b a c c a b$
Act $=\{a, c\}$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v is

$$
e_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c t_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{\text {as }}^{i}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=
\end{aligned}
$$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v from B is

$$
e^{B}{ }_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c B_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{\text {as }}{ }_{i}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=
\end{aligned}
$$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v is

$$
e_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c t_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{\text {as }}^{i}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=
\end{aligned}
$$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v is

$$
e_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c t_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{\text {as }}^{i}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=c a \\
& A c t=\{b\}
\end{aligned}
$$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v is

$$
e_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c t_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{\text {as }}^{i}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=c a b \\
& \text { Act }=\{a, b\}
\end{aligned}
$$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v is

$$
e_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c t_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{\text {as }}^{i}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=c a b a \\
& \text { Act }=\{a, b, c\}
\end{aligned}
$$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v is

$$
e_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c t_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{\text {as }}^{i}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=c a b a c \\
& \text { Act }=\{b, c\}
\end{aligned}
$$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v is

$$
e_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c t_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{\text {as }}^{i}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=c a b a c a a \\
& \text { Act }=\{b, c\}
\end{aligned}
$$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v is

$$
e_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c t_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{a s}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=c a b a c a a c \\
& \text { Act }=\{a, b, c\}
\end{aligned}
$$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v is

$$
e_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c t_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{\text {as }}^{i}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=c a b a c a a c a \\
& \text { Act }=\{a, b\}
\end{aligned}
$$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v is

$$
e_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c t_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{\text {as }}^{i}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=c a b a c a a c a c c c \\
& \text { Act }=\{a, b\}
\end{aligned}
$$

p-expansion of a word

Let $v=v_{1} \cdots v_{\ell} \in A^{\ell}$. The p-expansion of v is

$$
e_{p}(v)=w_{0} v_{1} w_{1} \cdots w_{\ell-1} v_{\ell}
$$

where $w_{i} \in A^{*}$ and

- $\left|w_{i}\right| \sim \mathcal{G e o}\left(p_{A c t_{i}}\right)-1$
- the letters of w_{i} are i.i.d according to the distribution of the passive letters $D_{P_{\text {as }}^{i}}$

$$
\begin{aligned}
& u=b a c c a b \\
& e_{p}(u)=c a b a c a a c a c c c b \\
& \text { Act }=\{a, c\}
\end{aligned}
$$

Expansion of a collapsed word

Lemma
Let $u \in\left(A^{\sharp}\right)^{\mathbb{N}}$ such that $u \sim D_{\rho}^{\otimes \mathbb{N}}$. Then $e_{\rho}(c(u)) \sim D_{\rho}^{\otimes \mathbb{N}}$.
Applying e_{p} to a collapsed word corresponds to what the word could have been before it was collapsed. It does not change the bounding state reached at the end.

Lemma

Let $u \in\left(A^{\sharp}\right)^{\mathbb{N}}$ such that $u \sim D_{P}^{\otimes \mathbb{N}}$, and u^{\sharp} be the word truncated after the first occurrence of \sharp. Call G_{p} the distribution of u^{\sharp}. Then

$$
e_{\rho}\left(c\left(u^{\sharp}\right)\right) \sim G_{p} .
$$

\sharp is always an active letter, so the occurrences of \sharp are preserved in u and $e_{p}(c(u))$

\mathcal{G}-expansion of a word

G_{p} : distribution of a word according to D_{p}^{\otimes} truncated after the first occurrence of $\#$.
Let $u=u^{n} \cdots u^{2} u^{1}$ a word such that

- the u_{m} are mutually independent
- $u_{m} \sim G_{2^{-m}}$.

We denote by \mathcal{G}_{n} the distribution of such a word.

- A word distributed according \mathcal{G}_{n} has exactly n symbols \sharp and ends with \sharp.
- It can be decomposed in a unique way into u^{1}, \ldots, u^{n} respectively distributed according $G_{2^{-1}}, \ldots, G_{2^{-n}}$.

\mathcal{G}-expansion of a word

\mathcal{G}-expanded word: Let $v=u^{n} \cdots u^{1} \sim \mathcal{G}_{n}$.

$$
e_{\mathcal{G}}(v)=e_{2^{-n}}^{B_{n}}\left(u^{n}\right) \cdots e_{2^{-m}}^{B_{m}}\left(u^{m}\right) \cdots e_{1 / 2}^{B_{1}}\left(u^{1}\right)
$$

with $B_{m}=\mathcal{S} \circ u_{n} \cdots u_{m+1}$.

Lemma

$$
\begin{aligned}
& u \sim \mathcal{G}_{n} \Rightarrow e_{\mathcal{G}}(c(u)) \sim \mathcal{G}_{n} . \\
& c(u \cdot v)=c(u) \cdot c^{\mathcal{S} \circ u}(v)
\end{aligned}
$$

so

$$
\begin{aligned}
e_{\mathcal{G}}(c(u)) & =e_{\mathcal{G}}\left(c^{B_{n}}\left(u^{n}\right) \cdots c^{B_{m}}\left(u^{m}\right) \cdots c^{B_{1}}\left(u_{1}\right)\right. \\
& =e_{2^{-n}}^{B_{n}}\left(c^{B_{n}}\left(u^{n}\right)\right) \cdots e_{2^{-m}}^{B_{m}}\left(c^{B_{m}}\left(u^{m}\right)\right) \cdots e_{1 / 2}^{B_{1}}\left(c^{B_{1}}\left(u^{1}\right)\right)
\end{aligned}
$$

(1) Model: Markov automaton

(2) Oracle skipping

(3) Main result

(4) Application to Jackson networks

- Tandem of two queues
- Performances

Main theorem

We define the words $w^{\circ}=\epsilon$ and $w^{n+1} \sim c\left(u^{n+1} e_{\mathcal{G}}\left(w^{n}\right)\right)$. For all $n, w^{n} \sim \mathcal{G}_{n}$.

Theorem

If a Markov automaton \mathcal{A} is coupling, then

$$
P\left(\exists n \in \mathbb{N}\left|\left|\mathcal{S} \circ w^{n}\right|=1\right)=1\right.
$$

and

$$
\mathbb{E}\left[\min \left\{n \in \mathbb{N}\left|\left|\mathcal{S} \circ w^{n}\right|=1\right\}\right]<\infty .\right.
$$

Moreover, for any $n \in \mathbb{N}$ such that $\left|\mathcal{S} \circ w^{n}\right|=1$, then the unique element of $\mathcal{S} \circ w^{n}$ is distributed according to the stationary distribution π of \mathcal{A}.

Algorithm

Algorithm 2: CFTP with oracle skipping
$n \leftarrow 0 ; w \leftarrow \epsilon$;
repeat
$n \leftarrow n+1 ; m \leftarrow n-1 ;$
generate $u \sim c\left(G_{2^{-n}}\right)$;
Act ${ }^{\text {old }} \leftarrow \mathcal{S}$; Act $\leftarrow \operatorname{Act}_{\mathcal{S} \circ u^{n}}$;
while $w \neq \epsilon$ do
Draw $a \sim D_{2^{-m}}\left(A c t \cup A c t^{\text {old }}\right)$;
if $a \in A c t^{\text {old }}$ then
$u \leftarrow u w_{1}$;

$$
\text { if } w_{1}=\sharp \text { then } m \leftarrow m-1
$$

Update Act ${ }^{\text {old }}$ and Act each time w or u are updated.

Difficulty

Draw a such that a is active for either u or w.
else $u \leftarrow u a$;
$w \leftarrow u$
until $|\mathcal{S} \circ w|=1$;

Proof

With $w^{\circ}=\epsilon$ and $w^{n+1} \sim c\left(u^{n+1} e_{\mathcal{G}}\left(w^{n}\right)\right)$.
(1) Convergence: There exists a coupling word u with $|u|=k$.

$$
P\left(u^{i} \text { contains } u\right) \geq \frac{1}{2^{|u|}} P_{u}
$$

Proof

With $w^{\circ}=\epsilon$ and $w^{n+1} \sim c\left(u^{n+1} e_{\mathcal{G}}\left(w^{n}\right)\right)$.
(1) Convergence: There exists a coupling word u with $|u|=k$.

$$
P\left(u^{i} \text { contains } u\right) \geq \frac{1}{2^{|u|}} P_{u}
$$

(2) Invariance: The state obtained after coupling does not change if the algorithm is started from further in the past.

$$
\mathcal{S} \circ w^{n+1} \subseteq \mathcal{S} \circ w^{n}
$$

$$
\begin{aligned}
\mathcal{S} \circ w^{k+1} & =\mathcal{S} \circ c\left(u^{k+1} \cdot e_{p}\left(w^{k}\right)\right) \\
& =\mathcal{S} \circ u^{k+1} \circ e_{p}\left(w^{k}\right) \\
& \subseteq \mathcal{S} \circ e_{p}\left(w^{k}\right) \\
& =\mathcal{S} \circ w^{k}
\end{aligned}
$$

Proof

With $w^{\circ}=\epsilon$ and $w^{n+1} \sim c\left(u^{n+1} e_{\mathcal{G}}\left(w^{n}\right)\right)$.
(1) Convergence: There exists a coupling word u with $|u|=k$.

$$
P\left(u^{i} \text { contains } u\right) \geq \frac{1}{2^{|u|}} P_{u}
$$

(2) Invariance: The state obtained after coupling does not change if the algorithm is started from further in the past.

$$
\mathcal{S} \circ w^{n+1} \subseteq \mathcal{S} \circ w^{n}
$$

(3) Convergence to the stationary distribution: same as in the classical proof
(4) Application to Jackson networks

- Tandem of two queues
- Performances

Lower bound on the mixing time of a Jackson network

Theorem
Let q be a queue. The mixing time $t_{\text {mix }}$ of the automaton satisfy

$$
t_{\text {mix }} \geq \frac{C(q)}{8 \max \left(p_{q}, r_{q}\right)},
$$

where $p_{q}=\sum_{q^{\prime}} D\left(q, q^{\prime}\right)$ and $r_{q}=\sum_{q^{\prime}} D_{q^{\prime}, q}$.

Coupling in a Jackson network

A queue that has coupled can uncouple.

Proposition

In an acyclic Jackson network, if a queue couples when all its ancestors have coupled, it cannot uncouple.

Theorem (Coupling time of a single $M / M / 1 / C$ queue)
The expected number of events it takes a $M / M / 1 / C$ queue to couple is at most $\frac{C+C^{2}}{2}$.

Coupling in a Jackson network

A queue that has coupled can uncouple.

Proposition

In an acyclic Jackson network, if a queue couples when all its ancestors have coupled, it cannot uncouple.

Theorem (Coupling time of a single $M / M / 1 / C$ queue)
The expected number of events it takes a $M / M / 1 / C$ queue to couple is at most $\frac{C+C^{2}}{2}$.

Coupling time of the first queue

Let τ_{1} be the coupling time of the first queue (no skipping)
Proposition (Coupling time of the first queue)
$\mathbb{E}\left[\tau_{1}\right]=C+C^{2}$
Let Y be the embedded chain with only the arrivals and services of the first queue.

$$
\mathbb{E}\left[\tau_{1}\right]=\frac{\lambda+\mu}{\lambda+2 \mu} \mathbb{E}\left[\tau_{Y}\right]=\frac{\rho+2}{\rho+1} \frac{C+C^{2}}{2} \leq C+C^{2}
$$

Second queue: skipping of the passive arrivals

$\tau_{2 \mid 1}$ coupling time of 2 from τ_{1}

- n_{i}^{0} number of arrivals up to time i;
- n_{i}^{q} number of services of queue q up to time i;

In the first queue: x_{0} state at τ_{1}

$$
x_{i}=x_{0}+n_{i}^{0}-n_{i}^{1} \leq C \quad \text { and } \quad n_{\tau_{2 \mid 1}}^{0} \leq n_{\tau_{2 \mid 1}}^{1}+C
$$

Second queue: skipping of the passive arrivals

$\tau_{2 \mid 1}$ coupling time of 2 from τ_{1}

- n_{i}^{0} number of arrivals up to time i;
- n_{i}^{q} number of services of queue q up to time i;

In the first queue: x_{0} state at τ_{1}

$$
\begin{gathered}
x_{i}=x_{0}+n_{i}^{0}-n_{i}^{1} \leq C \quad \text { and } \quad n_{\tau_{2 \mid 1}}^{0} \leq n_{\tau_{2 \mid 1}}^{1}+C \\
\mathbb{E}\left[\tau_{2 \mid 1}\right]=\mathbb{E}\left[n_{\tau_{2 \mid 1}}^{0}+n_{\tau_{2 \mid 1}}^{1}+n_{\tau_{2 \mid 1}}^{2}\right] \leq 2 \mathbb{E}\left[n_{\tau_{2 \mid 1}}^{1}+n_{\tau_{2 \mid 1}}^{2}\right]+C \leq 2\left(C+C^{2}\right)+C
\end{gathered}
$$

Second queue: skipping of the passive arrivals

$\tau_{2 \mid 1}$ coupling time of 2 from τ_{1}

- n_{i}^{0} number of arrivals up to time i;
- n_{i}^{q} number of services of queue q up to time i;

In the first queue: x_{0} state at τ_{1}

$$
\begin{gathered}
x_{i}=x_{0}+n_{i}^{0}-n_{i}^{1} \leq C \quad \text { and } \quad n_{\tau_{2 \mid 1}}^{0} \leq n_{\tau_{2 \mid 1}}^{1}+C \\
\mathbb{E}\left[\tau_{2 \mid 1}\right]=\mathbb{E}\left[n_{\tau_{2 \mid 1}}^{0}+n_{\tau_{2 \mid 1}}^{1}+n_{\tau_{2 \mid 1}}^{2}\right] \leq 2 \mathbb{E}\left[n_{\tau_{2 \mid 1}}^{1}+n_{\tau_{2 \mid 1}}^{2}\right]+C \leq 2\left(C+C^{2}\right)+C
\end{gathered}
$$

Coupling time of the tandem

$$
E[\tau]=\mathbb{E}\left[\tau_{1}\right]+\mathbb{E}\left[\tau_{2 \mid 1}\right] \leq 4 C+3 C^{2}
$$

Second queue: skipping of the passive arrivals

$\tau_{2 \mid 1}$ coupling time of 2 from τ_{1}

- n_{i}^{0} number of arrivals up to time i;
- n_{i}^{q} number of services of queue q up to time i;

In the first queue: x_{0} state at τ_{1}

$$
\begin{gathered}
x_{i}=x_{0}+n_{i}^{0}-n_{i}^{1} \leq C \quad \text { and } \quad n_{\tau_{2 \mid 1}}^{0} \leq n_{\tau_{2 \mid 1}}^{1}+C \\
\mathbb{E}\left[\tau_{2 \mid 1}\right]=\mathbb{E}\left[n_{\tau_{2 \mid 1}}^{0}+n_{\tau_{2 \mid 1}}^{1}+n_{\tau_{2 \mid 1}}^{2}\right] \leq 2 \mathbb{E}\left[n_{\tau_{2 \mid 1}}^{1}+n_{\tau_{2 \mid 1}}^{2}\right]+C \leq 2\left(C+C^{2}\right)+C
\end{gathered}
$$

Coupling time of the tandem

$$
E[\tau]=\mathbb{E}\left[\tau_{1}\right]+\mathbb{E}\left[\tau_{2 \mid 1}\right] \leq 4 C+3 C^{2}
$$

Without skipping, we have $\mathbb{E}[\tau]=O\left(C^{2} \rho\right)$.

Performance

Performance

Simple Tree Network
All queues have capacity 100

Performance

Simple Tree Network
The network has 100 leaves

Performance

Arbitrary Jackson Network
All queues have capacity 100

