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Model: Markov automaton

Markov automaton

Markov automaton

A = (S,A,D, ·), where

S is a finite state space;

A is a finite alphabet (the set of
events);

D is a probability distribution
over A;

· : S × A→ S; (s, a) 7→ s · a is
an action by the letters of A on
the states of S.

u[i ]: prefix of u of length i .
For S ⊆ S, S · a = {s · a | s ∈ S}.
Bounding chain: S · a ⊆ S ◦ a
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D(a) = D(b) = D(c) = 1/3

Markov chain generated by A:
let s ∈ S and u ∼ D⊗N.

Xn(s) = s · u[i ].
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Model: Markov automaton

Coupling in Markov automata

Grand coupling

X = (X (s))s∈S Xi = S · u[i ].

Coupling word

u such that |S · u| = 1.

Example : bb

If there exists a coupling word, then the algorithm terminates with
probability 1.
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Model: Markov automaton

Coupling from the past

Algorithm 1: Coupling from the past

for s ∈ S do S(s)← s repeat
Draw a ∼ D;
for s ∈ S do T (s)← S(s · a);
S ← T ;

until |S(S)| = 1 ;
return the element of S(S)

τb is the backward coupling time (number of steps)

If τ is the (forward) coupling of the chain, then τmix ≤ E[τ ] = E[τb]

tmix = min{i | max
x∈S
||ρi (x)− π||TV ≤ 1/4}

with ||ρ− π||TV = maxB⊆S |ρ(B)− π(B)|.
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Oracle skipping

Active and passive events

Let B ⊆ S and a ∈ A.

Active event

The event a is active for B if B ◦ a 6= B.

Passive event

The event a is passive for B if B ◦ a = B.
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S active passive

{1, 2, 3} b a, c
{1, 2} a, b c
{2, 3} b, c a
{1} b, c a
{2} a, c b
{3} a, b c
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The event a is active for B if B ◦ a 6= B.

Passive event

The event a is passive for B if B ◦ a = B.
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New distribution Di at step i

PDi
(ui = a) = PD(ui = a | a is active )

In state {1, 2}, P(a) = 1/2, P(b) = 1/2
and P(c) = 0.
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Oracle skipping

Hard on CFTP

S

t
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R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks 8 / 27



Oracle skipping

Special symbol ]

Let A] = A ∪ {]}.
The new symbol ] has no effect: ∀B ⊆ S, B · ] = B.

If D is a distribution over A and p ∈ (0, 1), then Dp is a distribution
over A] such that

Dp(]) = p
and Dp(a) = (1− p)D(a).

] is always considered as active:

ActB = {a ∈ A | B ◦ a 6= B} ∪ {]}
PasB = {a ∈ A | B ◦ a = B}
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Oracle skipping

Collapsing a word = removing its inactive letters

Let u ∈ An, n ∈ N ∪ {∞} and Acti = ActS◦u[i ].
c(u) = uφ(1) · uφ(2) · · · uφ(`), where

φ(i) = min{j > φ(i − 1) | uj ∈ Actφ(i−1)} and φ(0) = 0;

` = min{i | ∀j ∈ [φ(i) + 1, k], uj ∈ Pasφ(i)}

The collapsing is idempotent; c(u) is called a collapsed word.
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b, c

Lemma

c(u · v) = c(u) · cS◦u(v)

u = aacbcacaacacb
c(u) =

baccab

hhg
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R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks 10 / 27



Oracle skipping

Collapsing a word = removing its inactive letters

Let u ∈ An, n ∈ N ∪ {∞} and Acti = ActS◦u[i ].
c(u) = uφ(1) · uφ(2) · · · uφ(`), where

φ(i) = min{j > φ(i − 1) | uj ∈ Actφ(i−1)} and φ(0) = 0;

` = min{i | ∀j ∈ [φ(i) + 1, k], uj ∈ Pasφ(i)}

The collapsing is idempotent; c(u) is called a collapsed word.

1a c

a

a

b

cb

2

3

b, c

Lemma

c(u · v) = c(u) · cS◦u(v)

u = aacbcacaacacb
c(u) = bacc

ab

Act = {a, b, c}
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Oracle skipping

p-expansion of a word
Let v = v1 · · · v` ∈ A`. The p-expansion of v is

ep(v) = w0v1w1 · · ·w`−1v`

where wi ∈ A∗ and

|wi | ∼ Geo(pActi )− 1

the letters of wi are i.i.d according to the distribution of the passive
letters DPasi
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u = baccab

ep(u) =

cabacaacacccb

hhg
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Oracle skipping

Expansion of a collapsed word

Lemma

Let u ∈ (A])N such that u ∼ D⊗Np . Then ep(c(u)) ∼ D⊗Np .

Applying ep to a collapsed word corresponds to what the word could have
been before it was collapsed. It does not change the bounding state
reached at the end.

Lemma

Let u ∈ (A])N such that u ∼ D⊗Np , and u] be the word truncated after the

first occurrence of ]. Call Gp the distribution of u]. Then

ep(c(u])) ∼ Gp.

] is always an active letter, so the occurrences of ] are preserved in u and
ep(c(u))

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks 12 / 27



Oracle skipping

G-expansion of a word

Gp : distribution of a word according to D⊗p truncated after the first
occurrence of ].
Let u = un · · · u2u1 a word such that

the um are mutually independent

um ∼ G2−m .

We denote by Gn the distribution of such a word.

A word distributed according Gn has exactly n symbols ] and ends
with ].

It can be decomposed in a unique way into u1, . . . , un respectively
distributed according G2−1 , . . . ,G2−n .
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Oracle skipping

G-expansion of a word

G-expanded word: Let v = un · · · u1 ∼ Gn.

eG(v) = eBn

2−n(un) · · · eBm

2−m(um) · · · eB1

1/2(u1),

with Bm = S ◦ un · · · um+1.

Lemma

u ∼ Gn ⇒ eG(c(u)) ∼ Gn.

c(u · v) = c(u) · cS◦u(v)

so

eG(c(u)) = eG(cBn(un) · · · cBm(um) · · · cB1(u1)

= eBn

2−n(cBn(un)) · · · eBm

2−m(cBm(um)) · · · eB1

1/2(cB1(u1)).
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Main result

Main theorem

We define the words wo = ε and wn+1 ∼ c(un+1eG(wn)).
For all n, wn ∼ Gn.

Theorem

If a Markov automaton A is coupling, then

P(∃n ∈ N | |S ◦ wn| = 1) = 1

and
E[min{n ∈ N | |S ◦ wn| = 1}] <∞.

Moreover, for any n ∈ N such that |S ◦ wn| = 1, then the unique element
of S ◦ wn is distributed according to the stationary distribution π of A.
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Main result

Algorithm
Algorithm 2: CFTP with oracle skipping

n← 0; w ← ε;
repeat

n← n + 1; m← n − 1;
generate u ∼ c(G2−n);
Actold ← S; Act ← ActS◦un ;
while w 6= ε do

Draw a ∼ D2−m(Act ∪ Actold);
if a ∈ Actold then

w ← w−1
1 · w ;

if w1 ∈ Act then
u ← uw1;
if w1 = ] then m← m − 1

else u ← ua;

w ← u

until |S ◦ w | = 1 ;

Update Actold and Act each
time w or u are updated.

Difficulty

Draw a such that a is active
for either u or w .
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Main result

Proof

With wo = ε and wn+1 ∼ c(un+1eG(wn)).

1 Convergence: There exists a coupling word u with |u| = k .

P(ui contains u) ≥ 1

2|u|
Pu

2 Invariance: The state obtained after coupling does not change if the
algorithm is started from further in the past.

S ◦ wn+1 ⊆ S ◦ wn

3 Convergence to the stationary distribution: same as in the
classical proof
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S ◦ wn+1 ⊆ S ◦ wn

S ◦ wk+1 = S ◦ c(uk+1 · ep(wk))
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Application to Jackson networks

Lower bound on the mixing time of a Jackson network

C (q)
rq pq

Theorem

Let q be a queue. The mixing time tmix of the automaton satisfy

tmix ≥
C (q)

8 max(pq, rq)
,

where pq =
∑

q′ D(q, q′) and rq =
∑

q′ Dq′,q.

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks 20 / 27



Application to Jackson networks

Coupling in a Jackson network

A queue that has coupled can uncouple.

0 or 1 k

Proposition

In an acyclic Jackson network, if a queue couples when all its ancestors
have coupled, it cannot uncouple.

Theorem (Coupling time of a single M/M/1/C queue)

The expected number of events it takes a M/M/1/C queue to couple is at

most C+C2

2 .
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Coupling in a Jackson network

A queue that has coupled can uncouple.

0 k or k + 1

Proposition

In an acyclic Jackson network, if a queue couples when all its ancestors
have coupled, it cannot uncouple.

Theorem (Coupling time of a single M/M/1/C queue)
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Application to Jackson networks Tandem of two queues

Coupling time of the first queue

λ

µ µ

CC ρ = λ/µ

Let τ1 be the coupling time of the first queue (no skipping)

Proposition (Coupling time of the first queue)

E[τ1] = C + C 2

Let Y be the embedded chain with only the arrivals and services of the
first queue.

E[τ1] =
λ+ µ

λ+ 2µ
E[τY ] =

ρ+ 2

ρ+ 1

C + C 2

2
≤ C + C 2.
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Application to Jackson networks Tandem of two queues

Second queue: skipping of the passive arrivals

τ2|1 coupling time of 2 from τ1

n0
i number of arrivals up to time i ;

nq
i number of services of queue q up to time i ;

In the first queue: x0 state at τ1

xi = x0 + n0
i − n1

i ≤ C and n0
τ2|1
≤ n1

τ2|1
+ C

E[τ2|1] = E[n0
τ2|1

+ n1
τ2|1

+ n2
τ2|1

] ≤ 2E[n1
τ2|1

+ n2
τ2|1

] + C ≤ 2(C + C 2) + C

Coupling time of the tandem

E [τ ] = E[τ1] + E[τ2|1] ≤ 4C + 3C 2.

Without skipping, we have E[τ ] = O(C 2ρ).
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Application to Jackson networks Tandem of two queues

Performance
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Application to Jackson networks Performances

Performance
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R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks 25 / 27



Application to Jackson networks Performances

Performance

1
C 1

C 1

C 1

C 1

C 1

C 1

C 1

...

0 20 40 60 80 100 120
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Simple Tree Network

The network has 100 leaves

Oracle Normal

Capacity of queues

N
u

m
b

e
r 

o
f e

ve
n

ts
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Application to Jackson networks Performances

Performance

0 20 40 60 80 100 120
0

1000000

2000000

3000000

4000000

5000000

6000000

Arbitrary Jackson Network

All queues have capacity 100

Oracle Normal

Number of queues

N
u

m
b

e
r 

o
f e

ve
n

ts
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