Oracle skipping and applications to Jackson networks

Rémi Varloot, Ana Bušić and Anne Bouillard

8 octobre 2013 - ANR MARMOTE

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

イロト 不得 トイヨト イヨト 二日

Model: Markov automaton

2 Oracle skipping

3 Main result

Application to Jackson networks
 Tandem of two queues

• Performances

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Markov automaton

Markov automaton

 $\mathcal{A} = (\mathcal{S}, \mathcal{A}, \mathcal{D}, \cdot)$, where

- S is a finite *state space*;
- A is a finite alphabet (the set of *events*);
- *D* is a probability distribution over *A*;
- · : S × A → S; (s, a) → s · a is an action by the letters of A on the states of S.

u[i]: prefix of u of length i.For $S \subseteq S$, $S \cdot a = \{s \cdot a \mid s \in S\}$. Bounding chain: $S \cdot a \subseteq S \circ a$

$$D(a) = D(b) = D(c) = 1/3$$

Markov chain generated by \mathcal{A} : let $s \in S$ and $u \sim D^{\otimes \mathbb{N}}$.

$$X_n(s) = s \cdot u[i].$$

- 4 週 ト - 4 三 ト - 4 三 ト

Model: Markov automaton

Coupling in Markov automata

Grand coupling

$$\mathcal{X} = (X(s))_{s \in S}$$
 $\mathcal{X}_i = S \cdot u[i].$

Coupling word

u such that $|S \cdot u| = 1$.

Example : bb

If there exists a coupling word, then the algorithm terminates with probability 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Model: Markov automaton

Coupling from the past

Algorithm 1: Coupling from the past

for $s \in S$ do $S(s) \leftarrow s$ repeat | Draw $a \sim D$; for $s \in S$ do $T(s) \leftarrow S(s \cdot a)$; $S \leftarrow T$; until |S(S)| = 1; return the element of S(S)

- τ_b is the backward coupling time (number of steps)
- If τ is the (forward) coupling of the chain, then $\tau_{mix} \leq \mathbb{E}[\tau] = \mathbb{E}[\tau_b]$ $t_{mix} = \min\{i \mid \max_{x \in S} ||\rho_i(x) - \pi||_{TV} \leq 1/4\}$ with $||\rho - \pi||_{TV} = \max_{B \subseteq S} |\rho(B) - \pi(B)|$.

Oracle skipping

3 Main result

Application to Jackson networks
 Tandem of two queues

• Performances

3

イロト イポト イヨト イヨト

Active and passive events

Let $B \subseteq S$ and $a \in A$.

Active event

The event *a* is *active* for *B* if $B \circ a \neq B$.

Passive event

The event *a* is *passive* for *B* if $B \circ a = B$.

くほと くほと くほと

Active and passive events

Let $B \subseteq S$ and $a \in A$.

Active event

The event *a* is *active* for *B* if $B \circ a \neq B$.

Passive event

The event *a* is *passive* for *B* if $B \circ a = B$.

New distribution D_i at step i $P_{D_i}(u_i = a) = P_D(u_i = a \mid a \text{ is active })$ In state {1,2}, P(a) = 1/2, P(b) = 1/2and P(c) = 0.

- 4 週 ト - 4 三 ト - 4 三 ト

Hard on CFTP

t

 \mathcal{S}

Hard on CFTP

(日) (四) (三) (三) (三)

Hard on CFTP

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

Special symbol

Let $A_{\sharp} = A \cup \{\sharp\}.$

- The new symbol \sharp has no effect: $\forall B \subseteq S, B \cdot \sharp = B$.
- If D is a distribution over A and $p \in (0, 1)$, then D_p is a distribution over A_{\sharp} such that

•
$$D_p(\sharp) = p$$

• and
$$D_p(a) = (1-p)D(a)$$
.

is always considered as active:

•
$$Act_B = \{a \in A \mid B \circ a \neq B\} \cup \{\sharp\}$$

•
$$Pas_B = \{a \in A \mid B \circ a = B\}$$

イロト 不得 トイヨト イヨト 二日

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

A B A A B A

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act^B_{S \circ u[i]}$.
 $c^B(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act^B_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas^B_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

A B F A B F

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

Lemma

$$c(u \cdot v) = c(u) \cdot c^{\mathcal{S} \circ u}(v)$$

通 ト イヨ ト イヨト

u = aacbcacaacacb c(u) =

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

$$c(u \cdot v) = c(u) \cdot c^{\mathcal{S} \circ u}(v)$$

• • = • • = •

$$u = aacbcacaacacb$$

 $c(u) = ba$
 $Act = \{a, b, c\}$

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

Lemma

$$c(u \cdot v) = c(u) \cdot c^{\mathcal{S} \circ u}(v)$$

• • = • • = •

u = aacbcacaacacbc(u) = bac $Act = \{b, c\}$

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

Lemma

$$c(u \cdot v) = c(u) \cdot c^{\mathcal{S} \circ u}(v)$$

A B A A B A

u = aacbcacaacacbc(u) = bacc $Act = \{a, b, c\}$

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

Collapsing a word = removing its inactive letters

Let
$$u \in A^n$$
, $n \in \mathbb{N} \cup \{\infty\}$ and $Act_i = Act_{S \circ u[i]}$.
 $c(u) = u_{\phi(1)} \cdot u_{\phi(2)} \cdots u_{\phi(\ell)}$, where
• $\phi(i) = \min\{j > \phi(i-1) \mid u_j \in Act_{\phi(i-1)}\}$ and $\phi(0) = 0$;
• $\ell = \min\{i \mid \forall j \in [\phi(i) + 1, k], u_j \in Pas_{\phi(i)}\}$

The collapsing is idempotent; c(u) is called a collapsed word.

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* is

$$e_p(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_\ell$$

where $w_i \in A^*$ and

•
$$|w_i| \sim \mathcal{G}eo(p_{Act_i}) - 1$$

• the letters of *w_i* are i.i.d according to the distribution of the passive letters *D_{Pas_i}*

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* from *B* is

$$e^{B}_{p}(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_{\ell}$$

where $w_i \in A^*$ and

- $|w_i| \sim \mathcal{G}eo(p_{Act^{B_i}}) 1$
- the letters of w_i are i.i.d according to the distribution of the passive letters $D_{Pas^{B_i}}$

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* is

$$e_p(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_\ell$$

where $w_i \in A^*$ and

•
$$|w_i| \sim \mathcal{G}eo(p_{Act_i}) - 1$$

• the letters of *w_i* are i.i.d according to the distribution of the passive letters *D_{Pas_i}*

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* is

$$e_{\rho}(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_{\ell}$$

where $w_i \in A^*$ and

•
$$|w_i| \sim \mathcal{G}eo(p_{Act_i}) - 1$$

• the letters of *w_i* are i.i.d according to the distribution of the passive letters *D_{Pas_i}*

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* is

$$e_{\rho}(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_{\ell}$$

where $w_i \in A^*$ and

•
$$|w_i| \sim \mathcal{G}eo(p_{Act_i}) - 1$$

• the letters of *w_i* are i.i.d according to the distribution of the passive letters *D_{Pas_i}*

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* is

$$e_{\rho}(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_{\ell}$$

where $w_i \in A^*$ and

•
$$|w_i| \sim \mathcal{G}eo(p_{Act_i}) - 1$$

• the letters of *w_i* are i.i.d according to the distribution of the passive letters *D_{Pas_i}*

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* is

$$e_p(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_\ell$$

where $w_i \in A^*$ and

•
$$|w_i| \sim \mathcal{G}eo(p_{Act_i}) - 1$$

• the letters of *w_i* are i.i.d according to the distribution of the passive letters *D_{Pas_i}*

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

11 / 27

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* is

$$e_p(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_\ell$$

where $w_i \in A^*$ and

•
$$|w_i| \sim \mathcal{G}eo(p_{Act_i}) - 1$$

• the letters of *w_i* are i.i.d according to the distribution of the passive letters *D_{Pas_i}*

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

11 / 27

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* is

$$e_p(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_\ell$$

where $w_i \in A^*$ and

•
$$|w_i| \sim \mathcal{G}eo(p_{Act_i}) - 1$$

• the letters of *w_i* are i.i.d according to the distribution of the passive letters *D_{Pas_i}*

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* is

$$e_p(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_\ell$$

where $w_i \in A^*$ and

•
$$|w_i| \sim \mathcal{G}eo(p_{Act_i}) - 1$$

• the letters of *w_i* are i.i.d according to the distribution of the passive letters *D_{Pas_i}*

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* is

$$e_p(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_\ell$$

where $w_i \in A^*$ and

•
$$|w_i| \sim \mathcal{G}eo(p_{Act_i}) - 1$$

• the letters of *w_i* are i.i.d according to the distribution of the passive letters *D_{Pas_i}*

p-expansion of a word

Let $v = v_1 \cdots v_\ell \in A^\ell$. The *p*-expansion of *v* is

$$e_p(v) = w_0 v_1 w_1 \cdots w_{\ell-1} v_\ell$$

where $w_i \in A^*$ and

•
$$|w_i| \sim \mathcal{G}eo(p_{Act_i}) - 1$$

• the letters of *w_i* are i.i.d according to the distribution of the passive letters *D_{Pas_i}*

Expansion of a collapsed word

Lemma

Let
$$u \in (A^{\sharp})^{\mathbb{N}}$$
 such that $u \sim D_p^{\otimes \mathbb{N}}$. Then $e_p(c(u)) \sim D_p^{\otimes \mathbb{N}}$.

Applying e_p to a collapsed word corresponds to what the word *could have been* before it was collapsed. It does not change the bounding state reached at the end.

Lemma

Let $u \in (A^{\sharp})^{\mathbb{N}}$ such that $u \sim D_p^{\otimes \mathbb{N}}$, and u^{\sharp} be the word truncated after the first occurrence of \sharp . Call G_p the distribution of u^{\sharp} . Then

 $e_p(c(u^{\sharp})) \sim G_p.$

 \sharp is always an active letter, so the occurrences of \sharp are preserved in u and $e_p(c(u))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

$\mathcal G\text{-expansion}$ of a word

 G_p : distribution of a word according to D_p^{\otimes} truncated after the first occurrence of \sharp .

Let $u = u^n \cdots u^2 u^1$ a word such that

• the u_m are mutually independent

•
$$u_m \sim G_{2^{-m}}$$
.

We denote by \mathcal{G}_n the distribution of such a word.

- A word distributed according \mathcal{G}_n has exactly *n* symbols \sharp and ends with \sharp .
- It can be decomposed in a unique way into u^1, \ldots, u^n respectively distributed according $G_{2^{-1}}, \ldots, G_{2^{-n}}$.

\mathcal{G} -expansion of a word

 \mathcal{G} -expanded word: Let $v = u^n \cdots u^1 \sim \mathcal{G}_n$.

$$e_{\mathcal{G}}(v) = e_{2^{-n}}^{B_n}(u^n) \cdots e_{2^{-m}}^{B_m}(u^m) \cdots e_{1/2}^{B_1}(u^1),$$

with $B_m = S \circ u_n \cdots u_{m+1}$.

Lemma

$$u \sim \mathcal{G}_n \Rightarrow e_{\mathcal{G}}(c(u)) \sim \mathcal{G}_n.$$

$$c(u \cdot v) = c(u) \cdot c^{\mathcal{S} \circ u}(v)$$

SO

$$e_{\mathcal{G}}(c(u)) = e_{\mathcal{G}}(c^{B_n}(u^n) \cdots c^{B_m}(u^m) \cdots c^{B_1}(u_1) \\ = e_{2^{-n}}^{B_n}(c^{B_n}(u^n)) \cdots e_{2^{-m}}^{B_m}(c^{B_m}(u^m)) \cdots e_{1/2}^{B_1}(c^{B_1}(u^1)).$$

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Main result

2 Oracle skipping

Application to Jackson networks

- Tandem of two queues
- Performances

3

イロン イヨン イヨン イヨン

Main result

Main theorem

We define the words $w^o = \epsilon$ and $w^{n+1} \sim c(u^{n+1}e_{\mathcal{G}}(w^n))$. For all $n, w^n \sim \mathcal{G}_n$.

Theorem

If a Markov automaton \mathcal{A} is coupling, then

$$P(\exists n \in \mathbb{N} \mid |\mathcal{S} \circ w^n| = 1) = 1$$

and

$$\mathbb{E}[\min\{n \in \mathbb{N} \mid |\mathcal{S} \circ w^n| = 1\}] < \infty.$$

Moreover, for any $n \in \mathbb{N}$ such that $|S \circ w^n| = 1$, then the unique element of $S \circ w^n$ is distributed according to the stationary distribution π of A.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Main result

Algorithm

Algorithm 2: CFTP with oracle skipping $n \leftarrow 0$; $w \leftarrow \epsilon$;

repeat

$$\begin{array}{c|c} n \leftarrow n+1; \ m \leftarrow n-1; \\ \text{generate } u \sim c(G_{2^{-n}}); \\ Act^{old} \leftarrow \mathcal{S}; \ Act \leftarrow Act_{\mathcal{S} \circ u^n}; \\ \text{while } w \neq \epsilon \text{ do} \\ & \\ \hline Draw \ a \sim D_{2^{-m}}(Act \cup Act^{old}); \\ \text{if } a \in Act^{old} \text{ then} \\ & \\ & \\ w \leftarrow w_1^{-1} \cdot w; \\ \text{if } w_1 \in Act \text{ then} \\ & \\ & \\ & \\ u \leftarrow uw_1; \\ & \\ & \\ \text{if } w_1 = \sharp \text{ then } m \leftarrow m-1 \\ \\ & \\ & \\ \text{else } u \leftarrow ua; \\ & \\ w \leftarrow u \\ \\ \text{until } |\mathcal{S} \circ w| = 1 ; \\ \end{array}$$

Update Act^{old} and Act each time w or u are updated.

Difficulty

Draw a such that a is active for either u or w.

- 本語 ト 本 ヨ ト 一 ヨ

Proof

With $w^o = \epsilon$ and $w^{n+1} \sim c(u^{n+1}e_{\mathcal{G}}(w^n))$.

Q Convergence: There exists a coupling word u with |u| = k.

$$P(u^i ext{ contains } u) \geq rac{1}{2^{|u|}} P_u$$

Proof

With $w^o = \epsilon$ and $w^{n+1} \sim c(u^{n+1}e_{\mathcal{G}}(w^n))$.

Orresponded Convergence: There exists a coupling word u with |u| = k.

$$P(u^i ext{ contains } u) \geq rac{1}{2^{|u|}} P_u$$

Invariance: The state obtained after coupling does not change if the algorithm is started from further in the past.

$$\mathcal{S} \circ w^{n+1} \subseteq \mathcal{S} \circ w^n$$

$$\begin{array}{rcl} \mathcal{S} \circ w^{k+1} &=& \mathcal{S} \circ c(u^{k+1} \cdot e_p(w^k)) \\ &=& \mathcal{S} \circ u^{k+1} \circ e_p(w^k) \\ &\subseteq& \mathcal{S} \circ e_p(w^k) \\ &=& \mathcal{S} \circ w^k \end{array}$$

・ロン ・四 と ・ 回 と ・ 同

Proof

With $w^o = \epsilon$ and $w^{n+1} \sim c(u^{n+1}e_{\mathcal{G}}(w^n))$.

Q Convergence: There exists a coupling word u with |u| = k.

$$P(u^i ext{ contains } u) \geq rac{1}{2^{|u|}} P_u$$

Invariance: The state obtained after coupling does not change if the algorithm is started from further in the past.

$$\mathcal{S} \circ w^{n+1} \subseteq \mathcal{S} \circ w^n$$

Onvergence to the stationary distribution: same as in the classical proof

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

2 Oracle skipping

3 Main result

Application to Jackson networks

- Tandem of two queues
- Performances

イロト イポト イヨト イヨト

Lower bound on the mixing time of a Jackson network

$$\xrightarrow{r_q} C(q) \xrightarrow{p_q}$$

Theorem

Let q be a queue. The mixing time t_{mix} of the automaton satisfy

$$t_{mix} \geq \frac{C(q)}{8\max(p_q, r_q)},$$

where $p_q = \sum_{q'} D(q, q')$ and $r_q = \sum_{q'} D_{q',q}$.

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Coupling in a Jackson network

A queue that has coupled can uncouple.

Proposition

In an acyclic Jackson network, if a queue couples when all its ancestors have coupled, it cannot uncouple.

Theorem (Coupling time of a single M/M/1/C queue)

The expected number of events it takes a M/M/1/C queue to couple is at most $\frac{C+C^2}{2}$.

イロト 不得 トイヨト イヨト

Coupling in a Jackson network

A queue that has coupled can uncouple.

Proposition

In an acyclic Jackson network, if a queue couples when all its ancestors have coupled, it cannot uncouple.

Theorem (Coupling time of a single M/M/1/C queue)

The expected number of events it takes a M/M/1/C queue to couple is at most $\frac{C+C^2}{2}$.

イロト 不得 トイヨト イヨト

Coupling time of the first queue

Let Y be the embedded chain with only the arrivals and services of the first queue.

$$\mathbb{E}[\tau_1] = \frac{\lambda + \mu}{\lambda + 2\mu} \mathbb{E}[\tau_Y] = \frac{\rho + 2}{\rho + 1} \frac{C + C^2}{2} \le C + C^2.$$

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

< ロ > < 同 > < 回 > < 回 > < 回 > <

- $\tau_{2|1}$ coupling time of 2 from τ_1
 - n_i^0 number of arrivals up to time *i*;
 - n_i^q number of services of queue q up to time i;

In the first queue: x_0 state at τ_1

$$x_i = x_0 + n_i^0 - n_i^1 \le C$$
 and $n_{\tau_{2|1}}^0 \le n_{\tau_{2|1}}^1 + C$

イロト 不得 トイヨト イヨト

- $\tau_{2|1}$ coupling time of 2 from τ_1
 - n_i^0 number of arrivals up to time *i*;
 - n_i^q number of services of queue q up to time i;

In the first queue: x_0 state at τ_1 $x_i = x_0 + n_i^0 - n_i^1 \le C$ and $n_{\tau_{2|1}}^0 \le n_{\tau_{2|1}}^1 + C$ $\mathbb{E}[\tau_{2|1}] = \mathbb{E}[n_{\tau_{2|1}}^0 + n_{\tau_{2|1}}^1 + n_{\tau_{2|1}}^2] \le 2\mathbb{E}[n_{\tau_{2|1}}^1 + n_{\tau_{2|1}}^2] + C \le 2(C + C^2) + C$

- $\tau_{2|1}$ coupling time of 2 from τ_1
 - n_i^0 number of arrivals up to time *i*;
 - n_i^q number of services of queue q up to time i;

In the first queue: x_0 state at τ_1 $x_i = x_0 + n_i^0 - n_i^1 \le C$ and $n_{\tau_{2|1}}^0 \le n_{\tau_{2|1}}^1 + C$ $\mathbb{E}[\tau_{2|1}] = \mathbb{E}[n_{\tau_{2|1}}^0 + n_{\tau_{2|1}}^1 + n_{\tau_{2|1}}^2] \le 2\mathbb{E}[n_{\tau_{2|1}}^1 + n_{\tau_{2|1}}^2] + C \le 2(C + C^2) + C$

Coupling time of the tandem

$$E[\tau] = \mathbb{E}[\tau_1] + \mathbb{E}[\tau_{2|1}] \le 4C + 3C^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- $\tau_{2|1}$ coupling time of 2 from τ_1
 - n_i^0 number of arrivals up to time *i*;
 - n_i^q number of services of queue q up to time i;

In the first queue: x_0 state at τ_1 $x_i = x_0 + n_i^0 - n_i^1 \le C$ and $n_{\tau_{2|1}}^0 \le n_{\tau_{2|1}}^1 + C$ $\mathbb{E}[\tau_{2|1}] = \mathbb{E}[n_{\tau_{2|1}}^0 + n_{\tau_{2|1}}^1 + n_{\tau_{2|1}}^2] \le 2\mathbb{E}[n_{\tau_{2|1}}^1 + n_{\tau_{2|1}}^2] + C \le 2(C + C^2) + C$

Coupling time of the tandem

$$E[\tau] = \mathbb{E}[\tau_1] + \mathbb{E}[\tau_{2|1}] \le 4C + 3C^2.$$

Without skipping, we have $\mathbb{E}[\tau] = O(C^2 \rho)$.

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Tandem Network

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

3

R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks

2

イロン イヨン イヨン イヨン

 $\begin{array}{ccc} < \square \succ & < \textcircled{B} & < \Huge{E} & \\ \end{array} \\ R. Varloot, A. Bušić and A. Bouillard () Oracle skipping and applications to Jackson networks \end{array}$

3

Arbitrary Jackson Network

ヘロト 人間 ト くほ ト くほ トー

2