
Accuracy vs. Complexity: the stochastic

bound approach ?

F. Ait Salaht ∗ J. Cohen ∗∗ H. Castel Taleb ∗∗∗

J.M. Fourneau ∗∗∗∗ N. Pekergin †

∗ PRiSM, Univ. Versailles St Quentin, UMR CNRS 8144, Versailles
France (e-mail: safa@prism.uvsq.fr).

∗∗ PRiSM, Univ. Versailles St Quentin, UMR CNRS 8144, Versailles
France (e-mail: joco@prism.uvsq.fr).

∗∗∗ SAMOVAR, UMR 5157, Télécom Sud Paris, Evry, France,
(e-mail: hind.Castel@it-sudparis.eu)

∗∗∗∗ PRiSM, Univ. Versailles St Quentin, UMR CNRS 8144, Versailles
France (e-mail: jmf@prism.uvsq.fr).

† LACL, Univ. Paris Est, Créteil, France (e-mail:
nihal.pekergin@u-pec.fr).

Abstract: We present an algorithmic technique based on stochastic ordering to obtain upper
and lower bounding distributions for the results of some optimisation problems on discrete
random variables which are hard to solve exactly due to the multiplicative increasing size of the
distribution at each step. We illustrate the approach with the distribution of the completion
time of a task graph.

Keywords: Performance analysis, Bounding method, Probability distribution function,
Stochastic approximation, Numerical analysis, Algorithms, Graph theoretic models.

1. INTRODUCTION

We want to develop an algorithmic approach to obtain
stochastic bounds rather than approximations for some
problems in Operation Research which deal with random
variables and which are computationally hard to solve
numerically. To be more precise, we consider random
variables with discrete distributions. Many optimisation
problems on these random variables make the size of the
distribution increases multiplicatively at each iteration. In-
tuitively this is the reason of the hardness (and sometimes
the NP-hard property). We propose to use the stochastic
bound theory to reduce the size of the distributions at
each step of the computation. The control on the size of
the distribution of the results will help to control the com-
plexity while the stochastic bounds theory insures that the
result is a bound of the exact distribution. We illustrate the
approach by a well-known problem in performance evalua-
tion: the distribution of the completion time in a stochastic
task graph. It must be clear that we are interested in the
presentation of the methodology and its application to a
well-known example rather than an extensive comparison
of results on the computation of bounds and approximate
results for this particular problem. We refer to O'Connor
(2006) and Baccelli et al. (1993) for this topic.

More precisely, let d be the probability mass function (pmf
in the following) for a discrete distribution of probability
on a discrete state space totally ordered H. Assume
that the cardinal of H is N . We also assume that the

? This work is partially supported by a grant from DIGITEO,
project MARINA 2010.

distribution is such that d(i) > 0 for i ∈ H: no element of
H has a zero probability. d is considered as a vector of size
N whose entries are positive. In general, set H consists
in an interval of integers. Let r be a positive increasing
reward. We want to compute the pmf of a distribution
on a support (say F) with K states, such that K < N ,
which is the best approximation of d for r and which
is a stochastic lower bound. Of course, we also solve the
problem for an upper bound but we present most of the
results, here, for a lower bound, for the sake of readability.
Let Fd denote the cumulative distribution function for an
arbitrary distribution d . Let as denote Rd =

∑
r(i).d(i).

Finally, let G = H ∪ F .
We want to �nd the distribution db on states of F which
is a stochastic lower bound of the exact distribution d and
such that Rdb is the most accurate, when we compute the
expected reward. As the distribution db is on a smaller
state space, the operations on the bounding distributions
will be easier to compute. Since we compute stochastic
bounds, we obtain a bound on the results if the operations
involved in the problem are monotone. For instance the
computation of the distribution for the completion time
of a stochastic task graph require two operations: the
addition and the maximum of the random variables, which
are respectively associated with the convolution and the
product of underlying pmf when random variables are
mutually independent. Both operations are monotone.
Thus, stochastic bounds after numerical computations at
each iteration provide a stochastic bound of the �nal
result. The reward r is the criterion to optimise to choose
the bounding distribution. The reward is supposed to

be positive and increasing because such properties are
consistent with the stochastic ordering of distributions
as we will show in Section 2. Many rewards used in
performance modelling are positive and increasing: for
instance the expectation and the other moments.

0	

0,2	

0,4	

0,6	

0,8	

1	

1,2	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	
0	

0,05	

0,1	

0,15	

0,2	

0,25	

0,3	

0,35	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	

Fig. 1. Discretization of a Continuous Distribution (left)
and Representation as a PH distribution (right).

A similar approach has been recently proposed in (Tan-
crez et al. (2009)) with a slightly di�erent context and
approach. Let us �rst introduce their problem. They begin
with a continuous distribution which models the service
duration in a production line. They build an upper bound-
ing discrete distribution as follows. They divide the sup-
port into K equal subintervals. Each of these subintervals
of the continuous distribution is associated with one single
point of the discrete one. This point is the upper limit of
the interval and the probability mass of the sub-interval
is associated to that point (see Fig. 1). Such a mapping
of the points and the mass provides an upper bound for
the st-ordering. Once the discrete distribution is built, a
PH distribution is easily associated to it and a numerical
analysis of lines of queues is conducted. As the produc-
tion lines considered can be modeled as a decision free
stochastic Petri-nets, it is known, since the seminal work
of Baccelli et al. (1992) that bounding the distribution of
the service times in the queues provides a bound on the
end to end delay. To conclude with their approach, their
bound is not optimal, but it is the most regular one in
some sense as it is based on equal subintervals and the
problem is to compute K integrals of the distribution on
the K sub-intervals. Our approach di�ers as we consider
discrete distribution as inputs and we want to compute
the most accurate approximation at each level according
to a reward function.

The technical part of the paper is organised as follows.
In the next section we introduce the strong stochastic
ordering among random variables and distributions. Sec-
tion 3 is devoted to the computation of the most accurate
bound according to the expectation of a reward. We �rst
de�ne the problem and give some theoretical results on
the bounds. Then, we propose a greedy algorithm and
we prove that, under some conditions, the algorithm is
optimal. We also show that if the conditions do not hold,
the solution is far from the best one. Finally we present
a dynamic programming approach which always gives the
optimal solution but whose complexity is cubic. In Section
4 we show how to use this approach to compute upper
and lower stochastic bounds on the distribution of the
completion time of a serie-parallel task graph.

2. INTRODUCTION TO STOCHASTIC BOUNDS

We present brie�y the stochastic comparison method and
we refer to the book (Muller and Stoyan (2002)) for the

theoretical issues and several applications of this method.
We consider that state space G is endowed with a total
order denoted as ≤. Let X and Y be two discrete random
variables taking values on G, with cumulative probability
distributions FX and FY , and probability distributions pX
and pY (pX(i) = Prob(X = i), and pY (i) = Prob(Y = i),
for i ∈ G). The strong stochastic ordering ≤st is de�ned
as follows :

De�nition 1. X ≤st Y ⇐⇒ Ef(X) ≤ Ef(Y) for all non
decreasing functions f : G → R+ whenever expectations
exist.

The strong stochastic ordering ≤st can be also de�ned
from the distribution functions as follows :

De�nition 2. X ≤st Y ⇔ FX(a) ≥ FY (a), ∀a ∈ G

We suppose now that G = {1, 2, . . . , n}.
Proposition 3. The stochastic ordering between probabil-
ity measures pX and pY is de�ned as follows:

pX ≤st pY ⇔ ∀i, 1 ≤ i ≤ n,

n∑
k=i

pX(k) ≤
n∑

k=i

pY (k) (1)

Example 1. See Fig. 2. We consider G = {1, 2, . . . , 7}, and
two discrete probability distributions pX = [0.1, 0.2, 0.1,
0.2, 0.05, 0.1, 0.25], and pY = [0, 0.25, 0.05, 0.1, 0.15, 0.15,
0.3]. We can easily verify that pX ≤st pY : the probability
mass of pY is concentrated to higher states such as the cu-
mulative distribution of pY is always below the cumulative
distribution of pX .

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5

 𝑎𝑛 cos
𝑛𝜋𝑥

𝐿

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1 2 3 4 5 6 7

Series1

Series2

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7

p_x p_y

Series1

Series2
0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7

Series1

Series2

Fig. 2. pX ≤st pY : Their pmf (up) and their cumulative
distribution functions (down) .

3. MOST ACCURATE STOCHASTIC BOUNDS

We �rst present some theoretical results then we prove
some algorithms. In the following we will prove the results

for the lower bound. The results for the upper bound are
given without proofs for the sake of readability.

3.1 Theoretical results

In the following we will characterize the distributions d1
and d2 which minimize the di�erence of the expected
rewards. More formally, we want to answer the following
question: given a distribution d having state-space H,
compute d1 and d2 such that:

(1) d2 ≤st d ≤st d1,
(2) the supports of d1 and d2 have onlyK states (not the

same set for both distributions, but the same size),
(3)

∑
i∈G r(i)d(i)−

∑
i∈G r(i)d2(i) is minimal among the

set of distributions on K states that are stochastic
lower bound of d ,

(4)
∑

i∈G r(i)d1(i)−
∑

i∈G r(i)d(i) is minimal among the
set of distributions on K states that are stochastic
upper bound of d . Note that we do not know, at this
step, that the set G is the same for upper and lower
bounds.

d1 and d2 will be denoted as the optimal bounding
distributions on K states according to reward r .

Proposition 4. Note that as r is increasing and d2 ≤st d
we know that

∑
i∈G r(i)d(i)−

∑
i∈G r(i)d2(i) is positive.

Remember that G = H∪F . As the states of G are totally
ordered and �nite, we have a minimal and a maximal state.
They are respectively denoted as MinState and MaxState.

Proposition 5. Suppose that we compute the more accu-
rate lower bound, then state MinState is in F ∩ H: i.e.
d2(MinState) > 0 and d(MinState) > 0. Furthermore
state MaxState is in H.

Proof. Remember that MinState is de�ned as the mini-
mal state of F∪H. Thus we must prove that d2(MinState) 6=
0 and d(MinState) 6= 0 to make sure that MinState is in
F ∩H. As d2 ≤st d , we get d2(MinState) ≥ d(MinState).

• If d(MinState) > 0, then d2(MinState) > 0. Thus the
state is both in H and F .
• If if d(MinState) = 0, then we have
d2(MinState) > 0 as state MinState is in G. There is
a contradiction with the optimality of d2, as we can
easily build a bound better than d2.

Now assume that MaxState is not in H. Remember
that we have d2(MaxState) ≤ d(MaxState) due to the
stochastic ordering. Therefore if d(MaxState) = 0, then
d2(MaxState) = 0 and state MaxState is neither in F
nor in H. Thus MaxState is not a state of G. This is a
contradiction. 2

We obtain similar results for distribution d1 with an
inversion of the states MinState and MaxState. Let us
now prove the most important result about the sets. First
de�ne the predecessor and successor functions. Let x be an
arbitrary state. We de�ne the predecessor k of x in G as the
biggest state in G smaller than x: k = Γ−G(x). Similarly,
the successor of x is the smallest state of G bigger than x:
Γ+
G(x).

Lemma 6. Let d2 be the optimal distribution solution.
Assume that the support of d is H and the support of
d2 is F , then F ⊂ H (i.e. G = H).

Proof. By contradiction, assume that G 6= H. Let x be the
smallest element in F which is not in H. Thus, d2(x) > 0
and d(x) = 0. Let y = Γ−G(x) and h = Γ+

G(x). By
construction, y is in H∩F . Proposition 5 states that y and
h exist in G. We will prove a contradiction by designing a
new distribution d3 such that d2 ≤st d3 ≤st d and the
reward is better for d3 than for d2. We must consider two
cases, according to the fact that h is in H or not.

• case [x ∈ F :] We de�ne d3 as follows: d3(i) = d2(i) ∀i ≤ y,
d3(x) = d2(x)/2 ,
d3(h) = d2(h) + d2(x)/2 ,
d3(j) = d2(j) ∀j ≥ h.

Note that d3 uses the same set F as d2. This case is
depicted Fig. 3.
• case [x /∈ F :] We de�ne d3 as: d3(i) = d2(i) ∀i ≤ y,

d3(x) = 0 ,
d3(h) = d2(x) ,
d3(j) = d2(j) ∀j ≥ h.

Note that d3 does not use the same set as d2. But
both sets have the same size.

d2

d

d3

y x z

Fig. 3. The cumulative distributions in the �rst case.

Now it is clear that the support of d3 has K states,
and a careful inspection of the inequalities shows that
d2 ≤st d3 ≤st d and d3 6= d2. Therefore, for an
increasing positive reward, we get Rd3 > Rd2. We obtain
a contradiction: d2 is not the optimal bound. Therefore,
such a node x does not exist and F ⊂ H. 2

Lemma 7. Let d2 be the most accurate lower bound of d
on N−1 states for a positive reward r . Then, distributions
d and d2 have the same values on N − 2 states of H.

Proof. d2 is obtained by the minimization of the di�er-
ence of the expected rewards

∑
i∈G r(i)d(i)−

∑
i∈G r(i)d2(i).

We know that the supports of d2 and d only di�er by a
state (say k) which is removed from H. Let l = Γ−H(k). l
exists because Proposition 5 states that MinState is both
in H and F . Therefore k 6= MinState and Γ−H(k) exists.

By the optimality argument that we have previously used
in the proof of the previous Lemma, one can easily show
that: [

d2(i) = d(i) ∀i ≤ l,
d2(l) = d(l) + d(k) ,
d2(j) = d(j) ∀j ≥ k.

The di�erence between the expected rewards is just
d(k)(r(k)− r(l)). Thus the method, in that case, consists
in computing the values of d(i)(r(i) − r(Γ−H(i))) for all
states i in H and to remove the point which minimizes this
di�erence of cumulated rewards. 2

This result is the intuitive explanation of the greedy
Algorithm in the next sub-section.

Lemma 8. Removing two adjacent nodes costs more for
the cumulated rewards than the sum of the two indepen-
dent deletions.

Proof. Suppose that we remove nodes x and y from H to
build d2.

• If x and y are adjacent, we assume without loss of
generality that x = Γ−H(y). Let v be Γ−H(x). The
cumulated expected reward becomes:
Rd − d(x)(r(x)− r(v))− d(y)(r(y)− r(v)).
• Removing x alone subtracts d(x)(r(x) − r(v)) out
of the reward. And the deletion of y alone subtracts
d(y)(r(y)− r(x)) of the reward.

Then, comparing the results, one can see that the dele-
tion of adjacent nodes has an extra cost of d(y)(r(x) −
r(v)). 2

3.2 A Greedy Algorithm

We sort the values of the di�erence of reward (i.e.
d(i)(r(i) − r(Γ−H(i)))) and we select the N − K �rst
values. We use an array of boolean to keep in memory that
a node has been modi�ed during the algorithm. At each
step, two nodes are modi�ed: the node which is removed
and the node which receives the probability coming from
the nodes we remove and which is just before it when we
compute a lower bounding distribution.

Algorithm 1 Greedy (sometimes optimal) Lower Bound

1: Let d2 = d and z (MinState) =∞.
2: For all i in H except MinState, compute the value of
d(i)(r(i)− r(Γ−H(i))) and store it in vector z .

3: Let F = H, and set OptimalSelection to True.
4: Sort vector z in increasing order.
5: Initialize a vector Mark indexed by F to False.
6: for l = 1 to N −K do
7: Let j be the state of index l in z .
8: Let k = Γ−H(j) and m = Γ−F (j).
9: if Mark(j) or Mark(k) then
10: OptimalSelection=False
11: end if
12: Let Mark(j)=True; Mark(k)=True.
13: Let d2(m) = d2(m) + d2(j).
14: Remove state j from F . d2(j) is not de�ned any-

more.
15: end for

Theorem 9. The greedy algorithm provides a distribution
with support F and values d2, which is a strong stochastic
lower bound of d . The distribution has K points and it is
optimal if the value of variable "OptimalSelection" at the
end of the algorithm is True. Moreover, the complexity
of the greedy algorithm is O(NlogN) due to the Sort
operation.

Proof. The �rst part of the theorem comes from instruc-
tions 8 and 13, where we move some probability to a
smaller state. This operation makes the distribution a
lower bound according to the st-ordering. The assertion
about the size is trivial as we remove N − K states out

of N . Let us now prove the optimality when the condition
holds at the end of algorithm.

Assume that boolean OptimalSelection is true at the end
of the algorithm. This implies that we do not remove
adjacent nodes in H. Remember that z is sorted in an

increasing order. Thus, Rd2 = Rd −
∑N−K

l=1 z (l). Indeed,
if OptimalSelection is true, then, at each step of the
algorithm, we have m = k and the modi�cation of d2
performed by instruction 13 implies that we subtract
d2(j)(r(j) − r(m)) out of the cumulative reward Rd2.
Finally, we remark that according to Lemma 8, removing
any subset with adjacent nodes will have a higher impact
on the expected cumulated reward. Therefore, the solution
is optimal. 2

Unfortunately, the greedy algorithm does not give the
most accurate bound when the optimality criterion in the
algorithm is not true as shown in Example 2.

Example 2. Let H = {1, 2, 3, 4, 5, 6}, r(i) = i, and d =
[0.3, 0.1, 0.1, 0.1, 0.2, 0.2]. The initial accumulated reward
is Rd = 3.4. We want to compute the more accurate
approximation with a distribution on three states. Vector
z is equal to [0.3, 0.1, 0.1, 0.1, 0.2, 0.2]. Algorithm Greedy
removes states 2, 3 and 4. And we obtain F = {1, 5, 6},
d2a = [0.6, 0.2, 0.2], and Rd2a = 2.8. However, one
can easily found that the solution F = {1, 4, 5}, and
d2b = [0.5, 0.1, 0.4] is a better bound as it is a lower bound
of d and the cumulated reward is equal to 2.9. Thus the
solution provided by the greedy algorithm is not optimal.

3.3 Optimal Algorithm based on Dynamic Programming

We will transform our problem dealing with a discrete dis-
tribution into a graph theory problem. First, we consider
the weighted graph G = (V,E) such that:

• V is the set of vertices such that V = H∪{EndState}
where EndState is a new state larger than all the
states in H.
• E is the set of arcs such that (u, v) ∈ E if and only
if u < v or if v = EndState and u ∈ H. The weight of
arc e = (u, v), denoted by w(e), is de�ned as follows:

w(e) =

∑

j∈H:u<j<v

d(j)(r(j)− r(u)) if v ∈ H,∑
j∈H:u<j

d(j)(r(j)− r(u)) otherwise.

For the remaining of this section, we focus on certain paths
from state MinState to state EndState in graph G.

Lemma 10. Let dP be a distribution on a state set F
such that dP � d . The path P from state MinState
to state EndState through all elements of F has weight:∑

i∈H r(i)d(i)−
∑

i∈F r(i)d(i).

Proof. Let F = {f0 = MinState, f1, . . . , f|F|}. From its
de�nition, path P contains arcs (MinState, f1), (f|F|,EndState),
(fi, fi+1), for i = 1 . . . , |F|−1. The weight of P is the sum
of the weights of all its arcs. So it equals to:∑

i=0,...,|F|−1

∑
j∈H:fi<j<fi+1

d(j)(r(j)− r(fi))

+
∑

j∈H:f|F|<j≤fMaxState

d(j)(r(j)− r(fi))

After some elementary computations, the previous sum is
equal to:

∑
i∈H r(i)d(i)−

∑
i∈F r(i)d(i).

Moreover, from the previous lemma, it is easy to notice
that any path P from state MinState to state EndState
corresponds to a distribution dP as stated now:

Lemma 11. Let P the path from state MinState to state
EndState through all elements of F in G. There exists a
distribution dP on a state set F such that dP � d and
the weight of P is

∑
i∈H r(i)d(i)−

∑
i∈F r(i)d(i).

In fact, computing d2 is equivalent to compute a shortest
path in G from state MinState to state EndState with K
arcs. Guérin and Orda (2002) give such an algorithm based
on dynamic programming. Its complexity is O(N2K).

Theorem 12. The algorithm in Guérin and Orda (2002)
provides the optimal solution and its complexity is cubic
when K has the same order as N .

4. THE DISTRIBUTION OF THE COMPLETION
TIME IN A STOCHASTIC TASK GRAPH

We model a parallel program as an acyclic and directed
graph, called a task graph (see Pekergin and Vincent
(1991)). Nodes of the task graph represent the tasks,
and task durations are positive, random variables Si, 1 ≤
i ≤ n which are mutually independent. Arcs de�ne the
precedence (synchronization) constraints between tasks:
there exists an arc from task i to task j if task i must
precede task j. A task i can start its execution when
all its immediate predecessors terminate their executions.
We assume that node 1 (source node) has no predecessor
and node n (sink node) has no successor. Let Ti be the
completion date for task i and Γ−i is the set of tasks which
are immediate predecessors of task i.

Ti = max
j∈Γ−

i

{Tj}+ Si (2)

Since the graph is acyclic, task completion times can be
derived consecutively and Tn is the overall execution time
of the graph. We apply (max,+) operations on random
variables. The main di�culty comes from the max op-
erator applied on random variables which are not inde-
pendent. Even if the individual task execution times Si

are independent, if two paths use a common task j, they
are not independent. The computation of the task graph
execution time distribution with an in�nite (su�ciently
large) number of processors is equivalent to the compu-
tation of the completion time distribution of a stochastic
PERT network which is in the class of #P -complete prob-
lems (see O'Connor (2006)). The exact solution can be
obtained only by exhaustive enumeration. Hence the exact
analysis of such networks is only possible when the net-
work size is small or when the network has a constrained
topology. Here we consider serie-parallel task graphs. For
such a model, the task completion times can be derived
by applying (max,+) operations on independent random
variables. They also represent many interesting problems
by their own, and they are the basic objects used in
many bounding methods for general graphs. Let us explain
following O'Connor (2006), how one computes a task graph
completion time when task execution times Si are discrete
random variables and the network is an arbitrary DAG.
The �rst step consists in determining the subset of tasks

called conditioning set C, that eliminates the dependencies
in max operations. After conditioning on the duration of
tasks in C, the task graph becomes a series-parallel graph.
Clearly all the task execution time con�gurations for C
tasks must be enumerated for the conditioning, and for
each con�guration, conditional task graph execution time
must be computed. This is the reason that we cannot have
polynomial algorithms for the general case.

Although for series-parallel graphs, C is empty, their com-
putation are not that simple. Indeed we have a linear num-
ber of operations "max" and "+" and both operations have
a polynomial complexity on the size of the distributions.
However the size of the distribution grows rapidly after
each operation. Let X (resp. Y) be a discrete random
variable taking values in a set GX (resp. GY) of size lX > 1
(resp. lY > 1). The cumulative distribution will be noted
by FX(a) = Prob(X ≤ a).

Proposition 13. The computation of the distribution of
the maximum of two independent random variables re-
quires O(lX +lY) operations (max) and at most lX +lY −1
states for the resulting distribution. The convolution of
two independent random variables requires O(lX × lY)
operations (+) and at most lX× lY states for the resulting
distribution.

Proof. The �rst property comes from a well-kown prop-
erty: for all a ∈ GX ∪ GY , Fmax{X,Y }(a) = FX(a).FY (a).
Moreover, the addition of two random variables is associ-
ated to the convolution of distributions:

FX+Y (a) =
∑
b∈GX

Prob(X = b).
∑

c∈GY |c+b=a

Prob(Y = c)

.

Therefore, even for series-parallel graphs, the computation
complexity for a detailed distribution on large supports of
the overall task execution time may be very expensive.
For instance, for a series-parallel graph with m tasks in
each branch, if the execution time for each task is a
discrete distribution of size p, then the distribution for the
execution time of a branch may be in the worst case of size
pm. Thus the distribution size may increase exponentially
with the number of nodes.

We propose to apply the bounding algorithms in the
previous sections to control the size of the support of
the distribution. Thus, after each (max,+) operation we
apply either the greedy algorithm given in sub-section 3.2
or the optimal algorithm given in sub-section 3.3 to limit
the resulting distribution size to a given threshold K. We
must �rst show that we can replace input parameters of
(max,+) operations by bounding distributions on smaller
support sizes to compute bounds on the �nal results. Task
graphs constitutes a special case of stochastic timed event
graphs that have been largely studied in chapter 8 of
Baccelli et al. (1992). Due to (max, +) operations, we have
the following monotonicity result, which justi�es that we
obtain bounds of the distribution of the global execution
times using stochastic bounds after each operation.

Property 1. In equation 2, if ∀j ∈ Γ−i , T̄j ≤st Tj and
S̄i ≤st Si then T̄i = maxj∈Γ−

i
{T̄j}+ S̄i ≤st Ti.

We consider a series-parallel task graph composed of b
branches with m tasks in each branch. Task duration time

is a discrete random variable of size 4 and these values are
chosen randomly as a real value in the interval [0, 10[. The
overall task graph execution time can be computed by ap-
plying (max,+) operations on independent random vari-
ables as follows : S1 + max1≤j≤b{Lj}+ Sj.m+2, where the

execution time of the jth branch is Lj =
∑jm+1

i=(j−1)m+2 Si.

Fig. 4. Upper and Lower bounds of the cumulative distri-
butions for m=7 and K=25 (up), Lower bounds for
m=7 and K=50.

In Table 1, we give the exact results for task graphs with
b = 3 branches and various m. Column L is the length of
the �nal distribution, column T reports the computation
time in seconds, and column Rd contains the reward we
have computed: the expected value of the overall task
execution time. Table 2 contains the corresponding lower

m L T Rd

4 12160 0.7383 37.1455

5 46256 7.8542 43.3317

6 188416 415.1603 46.3308

7 785504 8.3653 103 46.5201

8 2974896 2.4244 105 56.1796

Table 1. Exact results

bounding values with K = 25 and K = 50. We present
the results of the greedy algorithm and the dynamic
programming algorithm. Clearly, the bounding algorithms
are much faster than the exact one. The computation time
with greedy bounds does not increase signi�cantly with
the size of the graph while it increases with the locally

Greedy (Locally)-Optimal
m K T Rd2 T Rd2

25 0.1125 35.6090 0.5781 36.3648
4 50 0.1705 36.5403 3.7996 36.8294

25 0.1412 41.4151 0.8191 42.2156
5 50 0.2484 42.5091 6.0513 42.8496

25 0.1793 43.6972 1.0872 45.0021
6 50 0.3083 45.0599 8.1150 45.7225

25 0.2134 42.9925 1.3683 44.7492
7 50 0.3697 45.0117 10.1021 45.7387

25 0.2552 52.2219 1.4004 53.9880
8 50 10.5801 54.1708 13.4566 55.0026

100 1.1274 55.0394 94.0466 55.5080

Table 2. Bounds

optimal algorithm but it remains largely smaller than the
exact computation time. The accuracy of the bounds are
improved for larger values ofK, and forK = 50 the quality
of bounds (greedy and locally optimal) are comparable
and they are both accurate. We want to emphasize here,
that the dynamic programming algorithm provides an
optimal bound for each intermediate result, and we do
not have any proof that using several times this method is
su�cient to obtain the best bound onK states of the exact
distribution. It is the reason why we denote this method
as a locally optimal bound.

5. CONCLUSION

Our method has a strong impact on the computation times
since we can control distribution sizes. Moreover we can
make a trade-o� between accuracy and speed by changing
distribution sizes. We will develop now new applications
in networks performance evaluation based on discretized
real measurements such as the approach developed in
Hernández-Orallo and Vila-Carbó (2009).

REFERENCES

Baccelli, F., Cohen, G., Olsder, G.J., and Quadrat, J.P.
(1992). Synchronization and Linearity: An Algebra for
Discrete Event Systems. Willey, New York.

Baccelli, F., Jean-marie, A., and Liu, Z. (1993). A survey
on solution methods for task graph models. INRIA
Report, Sophia Antipolis, France.

Guérin, R. and Orda, A. (2002). Computing shortest paths
for any number of hops. IEEE/ACM Trans. Netw.,
10(5), 613�620.

Hernández-Orallo, E. and Vila-Carbó, J. (2009). Web
server performance analysis using histogram workload
models. Computer Networks, 53(15), 2727�2739.

Muller, A. and Stoyan, D. (2002). Comparison Methods
for Stochastic Models and Risks. Wiley, New York, NY.

O'Connor, D. (2006). Exact and approximate distribu-
tions of stochastic PERT networks. Dublin University
College.

Pekergin, N. and Vincent, J.M. (1991). Stochastic bounds
on execution times of parallel programs. IEEE Trans.
Software Eng., 17(10), 1005�1012.

Tancrez, J.S., Semal, P., and Chevalier, P. (2009). His-
togram based bounds and approximations for produc-
tion lines. European Journal of Operational Research,
197(3), 1133�1141.

