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Motivation

@ Traffic characterization :
o Exponential arrivals and services, mathematical formulas
(example : Erlang Formula)
o General traffic: Pareto, Weibull : accurate model, high number
of parameters, intractable model
o Exact traffic traces : Histogram based approach, Markov
chains with huge state space

@ Markov chain Analysis :
e Stochastic bounds to reduce the size of the probability
distributions
e Bounds on performance mesures
o Control the distribution size, and the accuracy of the results
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Stochastic ordering theory

Optimal stochastic bounds algorithm

Queueing models with histogram traffic

e Stochastic Monotonicity proofs

o Performance measure bounds : numerical results
Queueing network analysis (DAG)

e Monotonicity proofs for networking elements : merge, split
o Numerical results for a queueing system

@ Conclusion
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@ Stochastic ordering theory



Stochastic ordering theory

Bounds, Stochastic comparisons

X <& Y < Ef(X) < Ef(Y)

for all non decreasing functions f : G — R™ whenever
expectations exist.

4

X<eYeVi1<i<n Y d2k)<> di(k) (1)
k=i k=i
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Stochastic bounds

Example: We consider G = {1,2,...,7},
px = [0.1, 0.2, 0.1, 0.2, 0.05, 0.1, 0.25] and
py = [0, 0.25, 0.05, 0.1, 0.15, 0.15, 0.3].
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The pinf of a discrete distributions X and Cumulative distribution functions
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@ Optimal Algorithm based on Dynamic Programming
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Bounding probability distributions

For a given distribution d of size N, and a measure ) r(i)d(/)
(r: E— RT),

= we compute bounding distributions d1 and d2 of size

K < N such that:

0 d2 Sst d Sst d]-.
Q > icr r(Nd(i) = > icw r(i)d2(i) is minimal among the set of
distributions on n states that are stochastically lower than d,

Q > gy r(1)d1(i) — > ;cg r(i)d(i) is minimal among the set of
distributions on n states that are stochastically upper than d.
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Example

Let :
o E={1, 2, 3, 4,5, 6},
o r[i] =1,

e d=10.3,0.1,0.1, 0.1, 0.2, 0.2]. The initial accumulated
reward is R = 3.4.

If we remove states 2, 3, 6, we found :
o d=[0.5,0.1,0.4] is a lower bound of d
@ on state space F = {1,4,5},
@ and the reward is equal to 2.9.
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Bounding histogram reduction

Optimal Algorithm based on dynamic programming
@ Graph theory problem.
o Consider the weighted graph G = (V, E) with:

» Lower Bound: w(e) =3 3., i, d()(r(j) — r(v))

» Upper Bound: w(e) = ZJEH:u<j<vd

rodel with Histogramm traffic

()(r(v) = ()

R
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Bounding histogram reduction

Optimal Algorithm based on dynamic programming
@ Graph theory problem.
o Consider the weighted graph G = (V, E) with:

» Lower Bound: w(e) =3 3., i, d()(r(j) — r(v))
> Upper Bound: w(e) = ¥jcruciey d0)(F(v) — (7))
Computing optimal bound = Compute a shortest path in graph G
with K nodes (K << N).
@ A mass probability of removed nodes is summed with the
» Lower Bound: immediate predecessor

» Upper Bound: immediate successor
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Bounding histogram reduction

Optimal Algorithm based on dynamic programming
@ Graph theory problem.
o Consider the weighted graph G = (V, E) with:

» Lower Bound: w(e) =3 3., i, d()(r(j) — r(v))
> Upper Bound: w(e) = ¥jcruciey d0)(F(v) — (7))
Computing optimal bound = Compute a shortest path in graph G
with K nodes (K << N).
@ A mass probability of removed nodes is summed with the
» Lower Bound: immediate predecessor

» Upper Bound: immediate successor

Complexity: O(N? K) and cubic when K has the same order as NV.

v
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o Discrete distribution A = (A, p(A)) with A = {0, 2, 3, 5, 7}
and p(A) = [0.05, 0.3, 0.15, 0.2, 0.3], Reward function r :
Vai €A r(a;) =a;, RIA] =>_, ca ¥(ai) pa(i) = 4.15

o Compute the Optimal Upper Bound A on 3 states such that
R[A] — R[A] is minimal.
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o Discrete distribution A = (A, p(A)) with A = {0, 2, 3, 5, 7},
p(A) = [0.05, 0.3, 0.15, 0.2, 0.3], Reward function r :
Vai € A r(aj) = ai, R[A] =), ca ¥(ai) pa(i) = 4.15.

o Compute the Optimal Upper Bound A on 3 states such that
R[A] — R[A] is minimal.

R [A] (4.85 ] (4.65) 1(5.35)H4.55 )

A= (A, p(A)) with A = {2, 5, 7}, p(A) = [0.35, 0.35, 0.3] and
R[A] = 4.55.
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© Queueing model with Histogramm traffic
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© Queueing model with Histogramm traffic
@ Histogram traffic model
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Histogram traffic model

Queueing model description

» Traffic trace used as illustration:

a 5
Frame number x10*

@ MAWI traffic trace corresponds

to a 1-hour IP traffic
9th of January 2007 between 12 and 13

@ Sampling period: T = 40 ms
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Histogram traffic model

Queueing model description

» Traffic trace used as illustration:

04
02
oL I LR ]
3 & 0 e S T T
Frame number x10* Load in period (bits) x 10

@ MAWI traffic trace corresponds @ Histogram representation

to a 1-hour IP traffic

9th of January 2007 between 12 and 13 @ The number of bins is 80511

@ Sampling period: T = 40 ms
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Histogram traffic model

Queueing model description

» Queueing model:

al batch size
AW distribution

departure batch size

buffer length distribution
distribution D)
Q(k)
k &

Arrival traffic is stationary and i.i.d. (A(t) = A).

State evolution equations

» The queue length equation:
Q(k) =min(B, (Q(k—1)+ A—-S)*), kel (2)

» The departure distribution under Tail Drop policy:

D(k) =min(S, Q(k—1)+.A), ke N. (3) |
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Histogram traffic model

Queueing model description

» Queueing model:

al batch size
AW distribution

departure batch size

buffer length distribution
distribution D)
Q(k)
k &

Arrival traffic is stationary and i.i.d. (A(t) = A).

State evolution equations

» The queue length equation:
Q(k) =min(B, (Q(k—1)+ A—-S)*), kel (2)

» The departure distribution under Tail Drop policy:

D(k) =min(S, Q(k—1)+.A), ke N. (3) |
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Histogram traffic model

The Histogram Buffer Stochastic Process: HBSP

Presentation of Herndandez and al. Model

Goal: Reduce the size of the initial trace = Accelerate the
computation time = Divide the state space (|| = N) into K

sub-intervals (bins), K << N.
°°:IIII|_

B a G B io 0%
Frame number x 10 Lu \d in peuod (bus) x 10

Bits transmitted (bits)
Probability
°
&

MAWTI traffic trace HBSP histogram using K=10 bins
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Histogram traffic model

The Histogram Buffer Stochastic Process: HBSP

Presentation of Hernandez and al. Model

Goal: Reduce the size of the initial trace = Accelerate the
computation time. = Divide the state space (|| = N) into K

sub-intervals (bins), K << N.

Probability
o
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Frame number x 10" Lo \d in peuod (hm] x 10

Bits transmitted (bits)

MAWTI traffic trace HBSP histogram using K=10 bins
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Histogram traffic model

The Histogram Buffer Stochastic Process: HBSP

Presentation of Herndandez and al. Model

Goal: Reduce the size of the initial trace = Accelerate the
computation time.=—> Divide the state space (|H| = N) into K

sub-intervals (bins), K << N.
°°:IIII|_
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Frame number x 10* Lu \d in peuod (bus) x 10°

Bits transmitted (bits)
Probability
°
&

MAWTI traffic trace HBSP histogram using K=10 bins
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Histogram traffic model

The Histogram Buffer Stochastic Process: HBSP

Presentation of Herndandez and al. Model

Goal: Reduce the size of the initial trace = Accelerate the
computation time. = Divide the state space (|*| = N) into K

sub-intervals (bins), K << N.
g lIIIl_
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MAWTI traffic trace HBSP histogram using K=10 bins
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Histogram traffic model

The Histogram Buffer Stochastic Process: HBSP

Goal: Reduce the size of the initial trace => Accelerate the
computation time.=—> Divide the state space (|H| = N) into K
sub-intervals (bins), K << N.
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MAWTI traffic trace HBSP histogram using K=10 bins
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Histogram traffic model

The Histogram Buffer Stochastic Process: HBSP

Stochastic process: HD/D/1/B queue
Queue length distribution:
Q(k) = min(B, (Q(k — 1) ® A — 8)T).

Where, § = class(S), B = class(B) and ® is the convolution operator of distributions.

Let X and Y two discrete random variables defined on Gx and Gy resp. with
|gx| = /X and |gy| = /y.

Proposition: Convolution complexity

» Convolution of the distributions generates a distribution with at most Ix X /y states.
» And requires:  O(Ix X ly) operation (+) using a naive approach;

O((IX + /y)/Og(/X + /y)) for FFT.

| N

Properties

@ An approximative method

@ Consider a single node using real workload traces

.
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Histogram traffic model

The Histogram Buffer Stochastic Process: HBSP

Stochastic process: HD/D/1/B queue

Queue length distribution:
Q(k) = min(B, (Q(k —1) ® A — §)™).

Where, § = class(S), B = class(B) and ® is the convolution operator of distributions.

Let X and Y two discrete random variables defined on Gx and Gy resp. with
|gx| = /X and |gy| = /y.

Proposition: Convolution complexity

» Convolution of the distributions generates a distribution with at most Ix X /y states.
» And requires:  O(Ix X ly) operation (+) using a naive approach;

O((IX + /y)/Og(/X + /y)) for FFT.

Properties

| N

@ An approximative method

@ Consider a single node using real workload traces
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© Queueing model with Histogramm traffic

@ Bounding histograms : Monotonicity results
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Bounding histograms : Monotonicity results

Monotonicity results

Goal: Stochastic bound on arrival process = bound on performance measures.

We prove the following major results:

If A(k) <st AY(k),Vk >0, then Q(k) <o QU(k),Vk >0

and
If A(k) <st AY(k),Vk >0, then D(k) <st DY(k),Vk > 0.

Also true for stationary processes.
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Bounding histograms : Monotonicity results

Monotonicity results

Goal: Stochastic bound on arrival process = bound on performance measures.

We prove the following major results:

If A(k) <st AY(k),Vk >0, then Q(k) <« QY(k),Vk >0

and
If A(k) <st AY(k),Vk >0, then D(k) <st DY(k),Vk > 0.

Also true for stationary processes.

Assume that the chain is ergodic and the steady state is .

QLK) <st QH(k+1) <ot ™ <ot QV(Kk+1) <at QU(K).
If ||QY(k + 1) — QL(k + 1)||oo < € the limit of QL(k) and QY (k) is =.
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@ Real traffic experiments
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Single Node

Real traffic experiments

Goal:
Compare the different methods (Exact result, HBSP method

and our bounds).

1- Single Node
@ Influence of the number of bins on the accuracy of the results
@ Relationship between buffer size and some performance

measures

2- Queueing network

We consider the following Tandem queue

By By B3
_ 2 TIHO-TIHO-TH0O—
—
Sy S S3



Single Node

Number of bins vs Accuracy: QoS parameters using MAWI
traffic trace

I

Single Node

N x10°
0.5F T
\ e Ef;g:; thod 7} ~ Exact
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Single Node

Number of bins vs Accuracy:
traffic trace

QoS parameters using MAWI

I

Single Node

N x10°
0.5F —— T
\ e Ei)l(;g:; method 75l | —Exact
o, 045 o Lower bound -+-HBSP method
= U bou d 7 =-Lower bound
Z oa pper boun o iy
K pper bound
£ ™~ — 6
& 0z \ g |
g — M 55 \ L
R e i —— ¥
2 2 5 PURE
= - ;
0.25 us s
0.2 .
20 40 60 80 100 120 140 160 180 200 35 Cl
bins 0 50 1.00 150 200
bins
(c) Blocking Probability (d) Mean buffer occupancy



Single Node

QoS parameters using CAIDA OC-48 traffic trace

10°
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107 | -+~ HBSP method
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= 0.7 | _
Il £ os ——Exact 10°] ! Upper bound
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Single Node

Exact | L.b | U.b | HBSP | Tancrez U.b
0.5 0.456 || 0.411 | 0.469 / 0.491
] 2 0.425 || 0.374 | 0.437 / 0.464
% 3 0.405 [ 0.371 [ 0437 | / 0.460
o 4 0.386 || 0.338 | 0.407 | 0.407 0.429
= 5 0.367 || 0.333 | 0.380 | 0.407 0.429
2 8 0.317 || 0.271 | 0.354 | 0.326 0.372
® 9 0.301 || 0.241 | 0.330 | 0.326 0.349
s 10 0.285 || 0.238 | 0.325 | 0.326 0.347
O 20 0.182 || 0.124 | 0.235 | 0.155 0.258
5 30 0.131 || 0.076 | 0.173 | 0.102 0.215
- &
Ex. Time (s) | 3378 4.5 5.3 0.01 0.06




Single Node

Queueing network: Tandem Queue

p(A)
—> —

0123456789

Bounds for each queue

@ Each queue is analyzed separately
@ Monotonicity = bound on each intermediate stage

@ Performance measures : blocking probabilities, Queue length,
response ime




Single Node

H-Monotonicity approach

[H-monotonicity for Hy and Hs] If HY <s H? and
H3 > Hf = H3j <& Hé’ and g < HEI”

Theorem (H-Monotonicity for losses)

If H <s HP and H? <. H3 and the element is work conserving
and operated under the Tail Drop policy, then Hj < Hf.
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© More complex networks
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More general queueing networks, with different flows

o Feed-Forward networks (DAG)

@ Decomposition approach, sequential study

Figure 1 : A queueing network with n = 7 nodes.
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Description du split et du Merge

~ Hs,, HM,;.; b

Figure 2 : Split and Merge operations
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Monotonicity of Split

Definition
A split is said to be H-monotone, iff
HZ <s H§ = Vi, HZ; <st Hg}i.

Let pj,1 <i < m (such that >, pi = 1), be the routing
probability of the batch to output / of the splitter. The probability
distribution of any output flow / is for all i < m:

Hs,i(k) = pi Hs(k), k € ES, k>0

Hsi(0) =1 Hs (k).
k=0

With a batch routing, the splitter is H-monotone. I




Stochastic ordering theory Optimal Algorithm based on Dynamic Programming Queueing model with Histogramm traffic Real

BZ
— [[IlO—
0.4 R,
B B B
plA) * . :
il OElmerdll | Ol @O
o Ry R, R

Figure 3 : A tree network with five nodes.
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[ BlH] [ EH] [ EFTTEFTT P ]
Queue 1 | L. b | 4232760 || 4351000 1.5525 / 0.00504
U.b | 4353820 || 4353930 / 1.5766 || 0.00545
Queue 2 | L. b | 1081130 || 1739270 1.1098 / 0.00065
U.b | 1084180 || 1740420 / 1.1102 || 0.00066
Queue 3 | L. b | 2099190 || 2600510 1.3656 / 0.00386
U.b | 2107100 || 2602110 / 1.3688 || 0.00392
Queue 4 | L.b | 2480090 | 2595280 1.5044 / 0.00191
U.b | 2494890 || 2596770 / 1.5091 || 0.00195

Table 1 : Bounding Results.
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@ Conclusion
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Conclusion

@ A novel approach based on stochastic bounds, to derive
optimal bounds :
e bounding aggregation of histograms
o relevant for the network dimensionning
o tradeoff between accuracy and complexity
@ current and future work

o Split with division of batch, Merge element
o Analysis of some AQM mechanisms
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