Bounds for queueing networks under histogram-based traffic models

Farah Ait Salaht ¹ Hind Castel-Taleb² Jean-Michel Fourneau ¹ Nihal Pekergin ³

¹PRISM, UVSQ

²INSTITUT TELECOM, Telecom SudParis

³LACL, Université Paris-Est Val de Marne

Motivation

- Traffic characterization :
 - Exponential arrivals and services, mathematical formulas (example : Erlang Formula)
 - General traffic: Pareto, Weibull : accurate model, high number of parameters, intractable model
 - Exact traffic traces : Histogram based approach, Markov chains with huge state space
- Markov chain Analysis :
 - Stochastic bounds to reduce the size of the probability distributions
 - Bounds on performance mesures
 - Control the distribution size, and the accuracy of the results

Outline

- Stochastic ordering theory
- Optimal stochastic bounds algorithm
- Queueing models with histogram traffic
 - Stochastic Monotonicity proofs
 - Performance measure bounds : numerical results
- Queueing network analysis (DAG)
 - Monotonicity proofs for networking elements : merge, split

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

- Numerical results for a queueing system
- Conclusion

Outline

Stochastic ordering theory

- 2 Optimal Algorithm based on Dynamic Programming
- Queueing model with Histogramm traffic
 Histogram traffic model
 Bounding histograms : Monotonicity results
- 4 Real traffic experiments
- 5 More complex networks

6 Conclusion

 Stochastic ordering theory
 Optimal Algorithm based on Dynamic Programming
 Queueing model with Histogramm traffic
 Real

 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Bounds, Stochastic comparisons

Definition

$$X \leq_{st} Y \iff \mathbb{E}f(X) \leq \mathbb{E}f(Y)$$

for all non decreasing functions $f : \mathbb{G} \to \mathbb{R}^+$ whenever expectations exist.

Proposition

$$X \leq_{st} Y \Leftrightarrow \forall i, 1 \leq i \leq n, \sum_{k=i}^{n} d2(k) \leq \sum_{k=i}^{n} d1(k)$$
 (1)

▲□▶▲□▶▲≡▶▲≡▶ ▲□▶ ▲□

Stochastic bounds

Example: We consider $\mathcal{G} = \{1, 2, \dots, 7\}$, $\mathbf{p}_X = [0.1, 0.2, 0.1, 0.2, 0.05, 0.1, 0.25]$ and $\mathbf{p}_Y = [0, 0.25, 0.05, 0.1, 0.15, 0.15, 0.3]$.

Cumulative distribution functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Outline

Stochastic ordering theory

2 Optimal Algorithm based on Dynamic Programming

Queueing model with Histogramm traffic Histogram traffic model Bounding histograms : Monotonicity results

- 4 Real traffic experiments
- 5 More complex networks

6 Conclusion

Bounding probability distributions

For a given distribution d of size N, and a measure $\sum_{i \in \mathbb{E}} r(i)d(i)$ $(r : \mathbb{E} \to \mathbb{R}^+)$,

 \Rightarrow we compute bounding distributions d1 and d2 of size K < N such that:

- $0 d2 \leq_{st} d \leq_{st} d1,$
- ② $\sum_{i \in \mathbb{E}} r(i)d(i) \sum_{i \in \mathbb{E}^{l}} r(i)d2(i)$ is minimal among the set of distributions on *n* states that are stochastically lower than *d*,
- $\sum_{i \in \mathbb{E}^{u}} r(i)d1(i) \sum_{i \in \mathbb{E}} r(i)d(i)$ is minimal among the set of distributions on *n* states that are stochastically upper than *d*.

Example

Let :

- $\mathbb{E} = \{1, 2, 3, 4, 5, 6\},\$
- $\mathbf{r}[i] = i$,
- **d** = [0.3, 0.1, 0.1, 0.1, 0.2, 0.2]. The initial accumulated reward is *R* = 3.4.

If we remove states 2, 3, 6, we found :

- $\mathbf{d} = [0.5, 0.1, 0.4]$ is a lower bound of \mathbf{d}
- on state space $\mathbb{F}=\{1,4,5\}$,
- and the reward is equal to 2.9.

Bounding histogram reduction

Optimal Algorithm based on dynamic programming

- Graph theory problem.
- Consider the weighted graph G = (V, E) with:
 - ► Lower Bound: $w(e) = \sum_{j \in \mathcal{H}: u < j < v} \mathbf{d}(j)(\mathbf{r}(j) \mathbf{r}(u))$
 - ► Upper Bound: $w(e) = \sum_{j \in \mathcal{H}: u < j < v} \mathbf{d}(j)(\mathbf{r}(v) \mathbf{r}(j))$

Computing optimal bound \equiv Compute a shortest path in graph *G* with *K* nodes (*K* << *N*).

A mass probability of removed nodes is summed with the
 Lower Bound: immediate predecessor
 Upper Bound: immediate successor

Complexity: $O(N^2 K)$ and cubic when K has the same order as N.

Bounding histogram reduction

Optimal Algorithm based on dynamic programming

- Graph theory problem.
- Consider the weighted graph G = (V, E) with:

► Lower Bound: $w(e) = \sum_{j \in \mathcal{H}: u < j < v} \mathbf{d}(j)(\mathbf{r}(j) - \mathbf{r}(u))$

► Upper Bound: $w(e) = \sum_{j \in \mathcal{H}: u < j < v} \mathbf{d}(j)(\mathbf{r}(v) - \mathbf{r}(j))$

Computing optimal bound \equiv Compute a shortest path in graph G with K nodes (K << N).

- A mass probability of removed nodes is summed with the
 - ► Lower Bound: immediate predecessor
 - ► Upper Bound: immediate successor

Complexity: $O(N^2 K)$ and cubic when K has the same order as N.

Bounding histogram reduction

Optimal Algorithm based on dynamic programming

- Graph theory problem.
- Consider the weighted graph G = (V, E) with:

► Lower Bound: $w(e) = \sum_{j \in \mathcal{H}: u < j < v} \mathbf{d}(j)(\mathbf{r}(j) - \mathbf{r}(u))$

► Upper Bound: $w(e) = \sum_{j \in \mathcal{H}: u < j < v} \mathbf{d}(j)(\mathbf{r}(v) - \mathbf{r}(j))$

Computing optimal bound \equiv Compute a shortest path in graph G with K nodes (K << N).

- A mass probability of removed nodes is summed with the
 - Lower Bound: immediate predecessor
 - Upper Bound: immediate successor

Complexity: $O(N^2 K)$ and cubic when K has the same order as N.

Example: Optimal upper bound

- Discrete distribution $\mathcal{A} = (\mathbf{A}, p(\mathbf{A}))$ with $\mathbf{A} = \{0, 2, 3, 5, 7\}$ and $p(\mathbf{A}) = [0.05, 0.3, 0.15, 0.2, 0.3]$, Reward function \mathbf{r} : $\forall a_i \in \mathbf{A}, \mathbf{r}(a_i) = a_i, R[\mathcal{A}] = \sum_{a_i \in \mathbf{A}} \mathbf{r}(a_i) p_{\mathbf{A}}(i) = 4.15$
- Compute the Optimal Upper Bound A on 3 states such that R[A] – R[A] is minimal.

Example: Optimal upper bound

- Discrete distribution $\mathcal{A} = (\mathbf{A}, p(\mathbf{A}))$ with $\mathbf{A} = \{0, 2, 3, 5, 7\}$, $p(\mathbf{A}) = [0.05, 0.3, 0.15, 0.2, 0.3]$, Reward function \mathbf{r} : $\forall a_i \in \mathbf{A}, \mathbf{r}(a_i) = a_i, R[\mathcal{A}] = \sum_{a_i \in \mathbf{A}} \mathbf{r}(a_i) p_{\mathbf{A}}(i) = 4.15.$
- Compute the Optimal Upper Bound *A* on 3 states such that *R*[*A*] − *R*[*A*] is minimal.

 $\overline{\mathcal{A}} = (\overline{\mathbf{A}}, p(\overline{\mathbf{A}}))$ with $\overline{\mathbf{A}} = \{2, 5, 7\}$, $p(\overline{\mathbf{A}}) = [0.35, 0.35, 0.3]$ and $R[\overline{\mathcal{A}}] = 4.55$.

Outline

Stochastic ordering theory

- 2 Optimal Algorithm based on Dynamic Programming
- Queueing model with Histogramm traffic
 Histogram traffic model
 Bounding histograms : Monotonicity results
- 4 Real traffic experiments
- 5 More complex networks

6 Conclusion

Stochastic ordering theory	Optimal Algorithm based on Dynamic Programming	Queueing model with Histogramm traffic	Real
		000000	000

Outline

Stochastic ordering theory

2 Optimal Algorithm based on Dynamic Programming

Queueing model with Histogramm trafficHistogram traffic model

- Bounding histograms : Monotonicity results
- 4 Real traffic experiments
- 5 More complex networks

6 Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Histogram traffic model

Queueing model description

► Traffic trace used as illustration:

- MAWI traffic trace corresponds to a 1-hour IP traffic 9th of January 2007 between 12 and 13
- Sampling period: T = 40 ms

Histogram traffic model

Queueing model description

► Traffic trace used as illustration:

- MAWI traffic trace corresponds to a 1-hour IP traffic 9th of January 2007 between 12 and 13
- Sampling period: T = 40 ms

- Histogram representation
- The number of bins is 80511

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● ● ●

Histogram traffic model

Queueing model description

► Queueing model:

Arrival traffic is stationary and i.i.d. (A(t) = A).

State evolution equations

► The queue length equation:

$$Q(k)=\min(B,\,(Q(k-1)+\mathcal{A}-S)^+),\ k\in\mathbb{N}.$$
 (2)

► The departure distribution under Tail Drop policy:

$$D(k) = \min(S, Q(k-1) + A), \quad k \in \mathbb{N}.$$
 (3)

Histogram traffic model

Queueing model description

► Queueing model:

Arrival traffic is stationary and i.i.d. (A(t) = A).

State evolution equations

► The queue length equation:

$$Q(k)=\min(B,\,(Q(k-1)+\mathcal{A}-S)^+),\ k\in\mathbb{N}.$$
 (2)

► The departure distribution under Tail Drop policy:

$$D(k) = \min(S, Q(k-1) + A), \quad k \in \mathbb{N}.$$
 (3)

The Histogram Buffer Stochastic Process: HBSP

Presentation of Hernández and al. Model

Goal: Reduce the size of the initial trace \implies Accelerate the computation time \implies Divide the state space ($|\mathcal{H}| = N$) into K sub-intervals (bins), K << N.

HBSP histogram using K=10 bins

The Histogram Buffer Stochastic Process: HBSP

Presentation of Hernández and al. Model

Goal: Reduce the size of the initial trace \implies Accelerate the computation time. \implies Divide the state space ($|\mathcal{H}| = N$) into K sub-intervals (bins), K << N.

MAWI traffic trace

HBSP histogram using K=10 bins

ロト (部) (三) (三) (三) (の)

The Histogram Buffer Stochastic Process: HBSP

Presentation of Hernández and al. Model

Goal: Reduce the size of the initial trace \implies Accelerate the computation time. \implies Divide the state space ($|\mathcal{H}| = N$) into K sub-intervals (bins), K << N.

HBSP histogram using K=10 bins

The Histogram Buffer Stochastic Process: HBSP

Presentation of Hernández and al. Model

Goal: Reduce the size of the initial trace \implies Accelerate the computation time. \implies Divide the state space ($|\mathcal{H}| = N$) into K sub-intervals (bins), K << N.

HBSP histogram using K=10 bins

The Histogram Buffer Stochastic Process: HBSP

Presentation of Hernández and al. Model

Goal: Reduce the size of the initial trace \implies Accelerate the computation time. \implies Divide the state space ($|\mathcal{H}| = N$) into K sub-intervals (bins), K << N.

HBSP histogram using K=10 bins

The Histogram Buffer Stochastic Process: HBSP

Stochastic process: HD/D/1/B queue

Queue length distribution:

$$Q(k) = \min(\hat{B}, (Q(k-1)\otimes \mathcal{A} - \hat{S})^+).$$

Where, $\hat{S} = class(S)$, $\hat{B} = class(B)$ and \otimes is the convolution operator of distributions.

Let X and Y two discrete random variables defined on \mathcal{G}_X and \mathcal{G}_Y resp. with $|\mathcal{G}_X| = I_X$ and $|\mathcal{G}_Y| = I_Y$.

Proposition: Convolution complexity

- ▶ Convolution of the distributions generates a distribution with at most $I_X \times I_Y$ states.
- ▶ And requires: $O(l_X \times l_Y)$ operation (+) using a naive approach;

 $O((I_X + I_Y) log(I_X + I_Y))$ for FFT.

Properties

- An approximative method
- Consider a single node using real workload traces

The Histogram Buffer Stochastic Process: HBSP

Stochastic process: HD/D/1/B queue

Queue length distribution:

$$Q(k) = \min(\hat{B}, (Q(k-1)\otimes \mathcal{A} - \hat{S})^+).$$

Where, $\hat{S} = class(S)$, $\hat{B} = class(B)$ and \otimes is the convolution operator of distributions.

Let X and Y two discrete random variables defined on \mathcal{G}_X and \mathcal{G}_Y resp. with $|\mathcal{G}_X| = I_X$ and $|\mathcal{G}_Y| = I_Y$.

Proposition: Convolution complexity

- ▶ Convolution of the distributions generates a distribution with at most $I_X \times I_Y$ states.
- ▶ And requires: $O(l_X \times l_Y)$ operation (+) using a naive approach;

 $O((I_X + I_Y) log(I_X + I_Y))$ for FFT.

Properties

- An approximative method
- Consider a single node using real workload traces

Stochastic ordering theory	Optimal Algorithm based on Dynamic Programm	ning G	Queueing model with Histogramm traffic	Real
			000000	000

Bounding histograms : Monotonicity results

Outline

Stochastic ordering theory

2 Optimal Algorithm based on Dynamic Programming

Queueing model with Histogramm traffic Histogram traffic model

- Bounding histograms : Monotonicity results
- 4 Real traffic experiments
- 5 More complex networks

6 Conclusion

Bounding histograms : Monotonicity results

Monotonicity results

Goal: Stochastic bound on arrival process \implies bound on performance measures.

We prove the following major results:

If
$$A(k) \leq_{st} A^U(k), \forall k \geq 0$$
, then $Q(k) \leq_{st} Q^U(k), \forall k \geq 0$

and

If
$$A(k) \leq_{st} A^U(k), \forall k \geq 0$$
, then $D(k) \leq_{st} D^U(k), \forall k \geq 0$.

Also true for stationary processes.

Assume that the chain is ergodic and the steady state is π .

$$Q^L(k) \leq_{st} Q^L(k+1) \leq_{st} \pi \leq_{st} Q^U(k+1) \leq_{st} Q^U(k).$$

If $||Q^U(k+1) - Q^L(k+1)||_{\infty} < \epsilon$ the limit of $Q^L(k)$ and $Q^U(k)$ is π .

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ()

Bounding histograms : Monotonicity results

Monotonicity results

Goal: Stochastic bound on arrival process \implies bound on performance measures.

We prove the following major results:

If
$$A(k) \leq_{st} A^U(k), \forall k \geq 0$$
, then $Q(k) \leq_{st} Q^U(k), \forall k \geq 0$

and

If
$$A(k) \leq_{st} A^U(k), \forall k \geq 0$$
, then $D(k) \leq_{st} D^U(k), \forall k \geq 0$.

Also true for stationary processes.

Assume that the chain is ergodic and the steady state is π .

$$Q^{L}(k) \leq_{st} Q^{L}(k+1) \leq_{st} \pi \leq_{st} Q^{U}(k+1) \leq_{st} Q^{U}(k).$$

 $|\mathsf{If}||Q^U(k+1) - Q^L(k+1)||_{\infty} < \epsilon \text{ the limit of } Q^L(k) \text{ and } Q^U(k) \text{ is } \pi.$

▲□▶▲□▶▲≡▶▲≡▶ ▲□▶ ▲□

Outline

Stochastic ordering theory

2 Optimal Algorithm based on Dynamic Programming

Queueing model with Histogramm traffic Histogram traffic model Bounding histograms : Monotonicity results

- 4 Real traffic experiments
- 5 More complex networks

6 Conclusion

Single Node

Real traffic experiments

Goal:

Compare the different methods (Exact result, HBSP method and our bounds).

- 1- Single Node
 - Influence of the number of bins on the accuracy of the results
 - Relationship between buffer size and some performance measures

2- Queueing network

We consider the following Tandem queue

Single Node

Number of bins vs Accuracy: QoS parameters using MAWI traffic trace

1- Single Node

a) Blocking Probability

b) Mean buffer occupancy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへ⊙

Single Node

Number of bins vs Accuracy: QoS parameters using MAWI traffic trace

1- Single Node

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�?

Single Node

QoS parameters using CAIDA OC-48 traffic trace

Single Node

		Exact	L.b	U. b	HBSP	Tancrez U. b
Suffer capacity (10 ⁵ bits)	0.5	0.456	0.411	0.469	/	0.491
	2	0.425	0.374	0.437	/	0.464
	3	0.405	0.371	0.437	/	0.460
	4	0.386	0.338	0.407	0.407	0.429
	5	0.367	0.333	0.380	0.407	0.429
	8	0.317	0.271	0.354	0.326	0.372
	9	0.301	0.241	0.330	0.326	0.349
	10	0.285	0.238	0.325	0.326	0.347
	20	0.182	0.124	0.235	0.155	0.258
	30	0.131	0.076	0.173	0.102	0.215
	&					
	Ex. Time (s)	3378	4.5	5.3	0.01	0.06

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Single Node

Queueing network: Tandem Queue

Bounds for each queue

- Each queue is analyzed separately
- \bullet Monotonicity \Longrightarrow bound on each intermediate stage
- Performance measures : blocking probabilities, Queue length, response ime

Single Node

H-Monotonicity approach

Theorem

[H-monotonicity for H₃ and H₅] If H₁^a \leq_{st} H₁^b and H₂^a \geq_{st} H₂^b \Longrightarrow H₃^a \leq_{st} H₃^b and $_{5}^{a} \leq_{st}$ H₅^b

Theorem (H-Monotonicity for losses)

If $H_1^a \leq_{st} H_1^b$ and $H_2^b \leq_{st} H_2^a$ and the element is work conserving and operated under the Tail Drop policy, then $H_I^a \leq_{st} H_I^b$.

Outline

Stochastic ordering theory

2 Optimal Algorithm based on Dynamic Programming

Queueing model with Histogramm traffic Histogram traffic model Bounding histograms : Monotonicity results

- 4 Real traffic experiments
- 5 More complex networks

6 Conclusion

More general queueing networks, with different flows

- Feed-Forward networks (DAG)
- Decomposition approach, sequential study

Figure 1 : A queueing network with n = 7 nodes.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Description du split et du Merge

Figure 2 : Split and Merge operations

Monotonicity of Split

Definition

A split is said to be H-monotone, iff
$$H_{S}^{a} \leq_{st} H_{S}^{b} \Rightarrow \forall i, H_{S,i}^{a} \leq_{st} H_{S,i}^{b}$$
.

Let $p_i, 1 \le i \le m$ (such that $\sum_{i=1}^m p_i = 1$), be the routing probability of the batch to output *i* of the splitter. The probability distribution of any output flow *i* is for all $i \le m$:

$$egin{aligned} &\mathcal{H}_{S,i}(k) = p_i \; \mathcal{H}_{S}(k), \; k \in \mathcal{E}^{\mathcal{H}_S}, \; k > 0 \ &\mathcal{H}_{S,i}(0) = 1 - \sum_{k
eq 0} \mathcal{H}_{S,i}(k). \end{aligned}$$

Theorem

With a batch routing, the splitter is H-monotone.

Figure 3 : A tree network with five nodes.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

		$\mathbb{E}[H_3]$	$\mathbb{E}[H_5]$	$\mathbb{E}[H_4']$	$\mathbb{E}[H_4^u]$	P_L
Queue 1	L.b	4232760	4351000	1.5525	/	0.00504
	U. b	4353820	4353930	/	1.5766	0.00545
Queue 2	L.b	1081130	1739270	1.1098	/	0.00065
	U. b	1084180	1740420	/	1.1102	0.00066
Queue 3	L.b	2099190	2600510	1.3656	/	0.00386
	U. b	2107100	2602110	/	1.3688	0.00392
Queue 4	L.b	2480090	2595280	1.5044	/	0.00191
	U. b	2494890	2596770	/	1.5091	0.00195

Table 1 : Bounding Results.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Outline

Stochastic ordering theory

- 2 Optimal Algorithm based on Dynamic Programming
- Queueing model with Histogramm traffic
 Histogram traffic model
 Bounding histograms : Monotonicity results
- 4 Real traffic experiments
- 5 More complex networks

6 Conclusion

Conclusion

• A novel approach based on stochastic bounds, to derive optimal bounds :

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

- bounding aggregation of histograms
- relevant for the network dimensionning
- tradeoff between accuracy and complexity
- current and future work
 - Split with division of batch, Merge element
 - Analysis of some AQM mechanisms

Publications

- Farah Ait Salaht, Hind Castel-Taleb, Jean-Michel Fourneau, Nihal Pekergin, "Stochastic Bounds and Histograms for Network Performance Analysis", EPEW2013, 10th European Workshop on Performance Engineering Ca' Foscari University, Venice, Italy, 16-17 September, 2013.
- Farah Ait Salaht, Hind Castel-Taleb, Jean-Michel Fourneau, Nihal Pekergin, "Une approche combinant bornes stochastiques, traces et histogrammes pour l?analyse de performance des réseaux", Modélisation des Systèmes Réactifs (MSR'13) INRIA Rennes - Bretagne Atlantique, France, 13-15 novembre 2013, publié dans la Revue JESA (Volume 27 nř 1-2-3/2013, Lavoisier).
- F. Ait-Salaht, H. Castel-Taleb, J.M. Fourneau, N. Pekergin,"A bounding histogram approach for network performance analysis", HPCC 2013 : 15th IEEE International Conference on High Performance Computing and Communications, Nov 13, 2013 - Nov 15, 2013 Where Zhangjiajie, China.