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Motivation

Traffic characterization :

Exponential arrivals and services, mathematical formulas
(example : Erlang Formula)
General traffic: Pareto, Weibull : accurate model, high number
of parameters, intractable model
Exact traffic traces : Histogram based approach, Markov
chains with huge state space

Markov chain Analysis :

Stochastic bounds to reduce the size of the probability
distributions
Bounds on performance mesures
Control the distribution size, and the accuracy of the results
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Outline

Stochastic ordering theory

Optimal stochastic bounds algorithm

Queueing models with histogram traffic

Stochastic Monotonicity proofs
Performance measure bounds : numerical results

Queueing network analysis (DAG)

Monotonicity proofs for networking elements : merge, split
Numerical results for a queueing system

Conclusion
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Bounds, Stochastic comparisons

Definition

X ≤st Y ⇐⇒ Ef (X ) ≤ Ef (Y )

for all non decreasing functions f : G→ R+ whenever
expectations exist.

Proposition

X ≤st Y ⇔ ∀i , 1 ≤ i ≤ n,
n∑

k=i

d2(k) ≤
n∑

k=i

d1(k) (1)
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Stochastic bounds

Example: We consider G = {1, 2, . . . , 7},
pX = [0.1, 0.2, 0.1, 0.2, 0.05, 0.1, 0.25] and
pY = [0, 0.25, 0.05, 0.1, 0.15, 0.15, 0.3].
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Bounding probability distributions

For a given distribution d of size N, and a measure
∑

i∈E r(i)d(i)
(r : E→ R+),
⇒ we compute bounding distributions d1 and d2 of size
K < N such that:

1 d2 ≤st d ≤st d1,

2
∑

i∈E r(i)d(i)−∑
i∈El r(i)d2(i) is minimal among the set of

distributions on n states that are stochastically lower than d ,

3
∑

i∈Eu r(i)d1(i)−∑
i∈E r(i)d(i) is minimal among the set of

distributions on n states that are stochastically upper than d .



Stochastic ordering theory Optimal Algorithm based on Dynamic Programming Queueing model with Histogramm traffic Real traffic experiments More complex networks Conclusion

Example

Let :

E = {1, 2, 3, 4, 5, 6},
r[i ] = i ,

d = [0.3, 0.1, 0.1, 0.1, 0.2, 0.2]. The initial accumulated
reward is R = 3.4.

If we remove states 2, 3, 6, we found :

d = [0.5, 0.1, 0.4] is a lower bound of d

on state space F = {1, 4, 5},
and the reward is equal to 2.9.
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Bounding histogram reduction

Optimal Algorithm based on dynamic programming

Graph theory problem.

Consider the weighted graph G = (V , E ) with:

I Lower Bound: w(e) =
∑

j∈H:u<j<v d(j)(r(j)− r(u))

I Upper Bound: w(e) =
∑

j∈H:u<j<v d(j)(r(v)− r(j))

Computing optimal bound ≡ Compute a shortest path in graph G
with K nodes (K << N).

A mass probability of removed nodes is summed with the

I Lower Bound: immediate predecessor

I Upper Bound: immediate successor

Complexity: O(N2 K ) and cubic when K has the same order as N.
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Example: Optimal upper bound

Discrete distribution A = (A, p(A)) with A = {0, 2, 3, 5, 7}
and p(A) = [0.05, 0.3, 0.15, 0.2, 0.3], Reward function r :
∀ ai ∈ A, r(ai ) = ai , R[A] =

∑
ai∈A r(ai ) pA(i) = 4.15

Compute the Optimal Upper Bound A on 3 states such that
R[A]− R[A] is minimal.
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Example: Optimal upper bound

Discrete distribution A = (A, p(A)) with A = {0, 2, 3, 5, 7},
p(A) = [0.05, 0.3, 0.15, 0.2, 0.3], Reward function r :
∀ ai ∈ A, r(ai ) = ai , R[A] =

∑
ai∈A r(ai ) pA(i) = 4.15.

Compute the Optimal Upper Bound A on 3 states such that
R[A]− R[A] is minimal.

7

32 5

0 0 2 20 3

5.2 4.85 4.65 5.35 4.55 4.6R[A] =

A = (A, p(A)) with A = {2, 5, 7}, p(A) = [0.35, 0.35, 0.3] and
R[A] = 4.55.
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Histogram traffic model

Queueing model description

I Traffic trace used as illustration:
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9th of January 2007 between 12 and 13

Sampling period: T = 40ms
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Histogram traffic model

Queueing model description
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MAWI traffic trace corresponds
to a 1-hour IP traffic
9th of January 2007 between 12 and 13

Sampling period: T = 40ms

Histogram representation

The number of bins is 80511
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Histogram traffic model

Queueing model description

I Queueing model:

Arrival traffic is stationary and i.i.d. (A(t) = A).

State evolution equations

I The queue length equation:

Q(k) = min(B, (Q(k − 1) +A− S)+), k ∈ N. (2)

I The departure distribution under Tail Drop policy:

D(k) = min(S , Q(k − 1) +A), k ∈ N. (3)

I Markov chain in discrete time.

Assumption: Markov chain ergodicity.
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Histogram traffic model

Queueing model description

I Queueing model:

Arrival traffic is stationary and i.i.d. (A(t) = A).

State evolution equations

I The queue length equation:

Q(k) = min(B, (Q(k − 1) +A− S)+), k ∈ N. (2)

I The departure distribution under Tail Drop policy:

D(k) = min(S , Q(k − 1) +A), k ∈ N. (3)

I inconvenient: Computation very cumbersome −→ too large
histogram
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Histogram traffic model

The Histogram Buffer Stochastic Process: HBSP

Presentation of Hernández and al. Model

Goal: Reduce the size of the initial trace =⇒ Accelerate the
computation time =⇒ Divide the state space (|H| = N) into K
sub-intervals (bins), K << N.
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Histogram traffic model
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Histogram traffic model

The Histogram Buffer Stochastic Process: HBSP

Stochastic process: HD/D/1/B queue

Queue length distribution:

Q(k) = min(B̂, (Q(k − 1)⊗A− Ŝ)+).

Where, Ŝ = class(S), B̂ = class(B) and ⊗ is the convolution operator of distributions.

Let X and Y two discrete random variables defined on GX and GY resp. with
|GX | = lX and |GY | = lY .

Proposition: Convolution complexity

I Convolution of the distributions generates a distribution with at most lX × lY states.

I And requires: O(lX × lY ) operation (+) using a naive approach;

O((lX + lY )log(lX + lY )) for FFT.

Properties

An approximative method

Consider a single node using real workload traces
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Bounding histograms : Monotonicity results

Monotonicity results

Goal: Stochastic bound on arrival process =⇒ bound on performance measures.

We prove the following major results:

Monotonicity

If A(k) ≤st A
U(k),∀k ≥ 0, then Q(k) ≤st Q

U(k), ∀k ≥ 0

and
If A(k) ≤st A

U(k), ∀k ≥ 0, then D(k) ≤st D
U(k),∀k ≥ 0.

Also true for stationary processes.

Proposed convergence test

Assume that the chain is ergodic and the steady state is π.

QL(k) ≤st Q
L(k + 1) ≤st π ≤st Q

U(k + 1) ≤st Q
U(k).

If ||QU(k + 1)− QL(k + 1)||∞ < ε the limit of QL(k) and QU(k) is π.
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Single Node

Real traffic experiments

Goal:
Compare the different methods (Exact result, HBSP method

and our bounds).

1- Single Node

Influence of the number of bins on the accuracy of the results
Relationship between buffer size and some performance
measures

2- Queueing network

We consider the following Tandem queue
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Single Node

Number of bins vs Accuracy: QoS parameters using MAWI
traffic trace

1- Single Node
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Single Node

Number of bins vs Accuracy: QoS parameters using MAWI
traffic trace

1- Single Node
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Single Node

QoS parameters using CAIDA OC-48 traffic trace
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Single Node

Exact L. b U. b HBSP Tancrez U. b

B
u

ff
er

ca
p

ac
it

y
(1

05
b

it
s)

0.5 0.456 0.411 0.469 / 0.491
2 0.425 0.374 0.437 / 0.464
3 0.405 0.371 0.437 / 0.460
4 0.386 0.338 0.407 0.407 0.429
5 0.367 0.333 0.380 0.407 0.429
8 0.317 0.271 0.354 0.326 0.372
9 0.301 0.241 0.330 0.326 0.349

10 0.285 0.238 0.325 0.326 0.347
20 0.182 0.124 0.235 0.155 0.258
30 0.131 0.076 0.173 0.102 0.215
&

Ex. Time (s) 3378 4.5 5.3 0.01 0.06
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Single Node

Queueing network: Tandem Queue

Bounds for each queue

Each queue is analyzed separately

Monotonicity =⇒ bound on each intermediate stage

Performance measures : blocking probabilities, Queue length,
response ime
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Single Node

H-Monotonicity approach

Theorem

[H-monotonicity for H3 and H5] If H
a
1 ≤st H

b
1 and

Ha
2 ≥st H

b
2 =⇒ Ha

3 ≤st H
b
3 and a

5 ≤st H
b
5

Theorem (H-Monotonicity for losses)

If Ha
1 ≤st H

b
1 and Hb

2 ≤st H
a
2 and the element is work conserving

and operated under the Tail Drop policy, then Ha
L ≤st H

b
L .
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More general queueing networks, with different flows

Feed-Forward networks (DAG)

Decomposition approach, sequential study

Figure 1 : A queueing network with n = 7 nodes.
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Description du split et du Merge

Figure 2 : Split and Merge operations
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Monotonicity of Split

Definition

A split is said to be H-monotone, iff
Ha
S ≤st H

b
S ⇒ ∀i , Ha

S,i ≤st H
b
S,i .

Let pi , 1 ≤ i ≤ m (such that
∑m

i=1 pi = 1), be the routing
probability of the batch to output i of the splitter. The probability
distribution of any output flow i is for all i ≤ m:

HS,i (k) = pi HS(k), k ∈ EHS , k > 0

HS,i (0) = 1−
∑
k 6=0

HS,i (k).

Theorem

With a batch routing, the splitter is H-monotone.



Stochastic ordering theory Optimal Algorithm based on Dynamic Programming Queueing model with Histogramm traffic Real traffic experiments More complex networks Conclusion

Figure 3 : A tree network with five nodes.
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E[H3] E[H5] E[H l
4] E[Hu

4 ] PL

Queue 1 L. b 4232760 4351000 1.5525 / 0.00504
U. b 4353820 4353930 / 1.5766 0.00545

Queue 2 L. b 1081130 1739270 1.1098 / 0.00065
U. b 1084180 1740420 / 1.1102 0.00066

Queue 3 L. b 2099190 2600510 1.3656 / 0.00386
U. b 2107100 2602110 / 1.3688 0.00392

Queue 4 L. b 2480090 2595280 1.5044 / 0.00191
U. b 2494890 2596770 / 1.5091 0.00195

Table 1 : Bounding Results.
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Conclusion

A novel approach based on stochastic bounds, to derive
optimal bounds :

bounding aggregation of histograms
relevant for the network dimensionning
tradeoff between accuracy and complexity

current and future work

Split with division of batch, Merge element
Analysis of some AQM mechanisms
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(MSR’13) INRIA Rennes - Bretagne Atlantique, France, 13-15 novembre 2013,
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