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| Outline I

Low Rank Decomposition of a Markov Chain

Class (! and G DTMC

Computation of the steady-state distribution

Computation of the transient distribution

Stochastic Bound of an arbitrary DTMC by a DTMC with a low rank

decomposition

All vectors are row vectors.
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Definition 1 A class C stochastic matrix P is defined by 2 vectors v and
c such that:

P=[1,1,1,...,1]"v+10,1,2,...,n—1]"¢,

where v 15 a positive vector whose norm s equal to 1, c is a vector whose
entries sum up to 0 .
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Definition 2 A class C¢ stochastic matriz P is defined by 3 vectors
(v,7,¢) such that:

P=clv+rle,
where e 1s a vector whose all entries are equal to 1, v 1s a positive vector

whose norm is equal to 1, ¢ is a vector whose entries sum up to 0 and e is
the transpose of e.
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Example 1 Consider the following class C¢ matriz:
M = [1111]%[0.2,0.1,0.4,0.3]
+ [0,1,1,2]1[0.1, -0.05,0.05, —0.1].
M 1is equal to:
02 01 04 0.3 0. 0. 0 0
0.2 0.1 04 0.3 0.1 —-0.05 0.05 -0.1
0.2 0.1 04 0.3 0.1 —-0.05 0.05 -0.1
0.2 0.1 04 03 02 -01 01 -0.2 |
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Finally,
0.2 0.1 04 0.3
0.3 0.05 0.45 0.2
M —
0.3 0.05 0.45 0.2
04 00 05 0.1

PRUSM ANR 12 MONU-0019 and Project CNRS-CNRST 6,/27]



Definition 3 We consider the set Ay of stochastic matrices M defined by:

k
M =elv+ E rici,
i=1

where c; are vectors whose entries sum up to 0 and r; are vectors such that
rilj] <1 for alli and j. We say that a matriz in A has a decomposition
of rank k. When vectors c; are non zero and independent and similar

conditions hold for vectors r;, we say that matrixz has a full rank k
decomposition.

Property 1 Matrices in Ay have rank upmost k + 1

\- )
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e Computing the steady state distribution: linear time algorithm
e Computing the transient distribution: easier algorithm
e Computing the distribution of the first passage time

e We generalize the first two properties to matrices with a low rank

decomposition.
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e For all z, y z row vectors with the same size, zy’ 2z = zzy’ as xy! is a

scalar.
e Furthermore by construction ve! =1 for all 3.

e and c;e!l =0 for all i
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e Let us define matrix A by Alfi,l] = ¢rl.

e Property 2 If matriz (Id — A) s not singular, then the stationary
distribution of an ergodic DTMC M wn A is given as follows:

k
™ :U+ZE[7“Z-]CZ-, (1)
i=1
where the values of E|r;] which represent the expectations of r; on the

steady-state distribution g can be solved from a linear system of size

k.
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e Note that we compute the expectations E[r;| before we compute the
steady-state distributions and we do not need these distributions to

compute the expectations due to the properties of the matrix.

e Property 3 The complexity for computing the steady state
distribution is O(k*N).

e Example 2 Consider matriz M whose decomposition of rank 2 1s:

1,1,1,1,1,1,1,1)F
0.1,0.2,0.1,0.1,0.1,0,0.2,0.2]

+ [0,0.01,0.01,0.1,0.1,0.2,0.5,0.5]
—0.05, —0.05, —0.1, 0.2, 0,0, 0, 0]
+ [0,0.5,1,0,1,0,1,0]%
0,0,0,0,—0.1,0.1,—0.1,0.1].

PRUSM ANR 12 MONU-0019 and Project CNRS-CNRST 11/27]



, , 0.0185 —0.125
Matrix A is readily computed: :

—0.01 —-0.2

and V is [0.223, 0.5].
Therefore £ = [0.2312031, 0.3925830]

the steady state distribution of the matrix is:

v 4 0.2312031 * ¢l + 0.392583 * 2.

One finally get that this distribution is:

10.0884,0.1884,0.0769, 0.1462, 0.0608, 0.0393, 0.1607, 0.2393].
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-

in A is given 7T(1\7/}’)

Property 4 The transient distribution at discrete time n of a DTMC M

= Wl(\(/)I)M” where M™ 1s given by:

k
M" =elv+ Z(S?)Tci,
i=1

where the s are given by the following induction:

(2)

1 _
n+1 __ n\T S on\T .
5 = wv(si') e+ ;ci(s]) T
Lower Complexity.
PRiSM ANR 12 MONU-0019 and Project CNRS-CNRST

[13/27]



4 N

e Singular Value Decomposition of a matrix m x n (A).

A =USVT,

where S = diag(o1,09,...,0.,0,...,0), such that the singular values
are ordered in decreasing order. r is the rank of A.

e U and V are both orthogonal matrices (resp. (m x m) and n x n) and
satisfy Av! = o;ul and u; A = v}l o; for all 4.

e wu,; are the left singular vectors. v; are the right singular vectors, o; are
the singular values.

\_ J
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e Fckart et Young (36): the best rank k approximation for the Frobenius

11Or1.

Theorem 1 A best rank k approximation of A s given by zeroing the
r — k trailing singular values of A, i.e.

A, =US, VT,

where Sy, = diag(o1,02,...,0%,0,...,0), and the Frobenius norm of
the difference is given by the Fuclidean norm of the singular values

which have been zeroed.

1A = Agllr = /o3,y + ..+ 02

o where [[Allr = /S0, S5 a2, = /S 07,
- Y
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because of the complexity: i.e. O(n x m x min(n,m)).

Instead we compute a monotone upper bound (for the stochastic
ordering of the initial matrix)

Gives a stochastic bound on the steady-state and transient distribution

Provides a bound on the expectation of any non decreasing reward on

the distributions.
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Property 5 A matriz of class C is stochastically monotone if r is non
decreasing and cKgt 1S non negative.

Property 6 Generalization rank k: If the following conditions hold, the
matriz P is st-monotone:

1. for all 7, the vector r; is non decreasing.

2. for all v, the vectors c; K¢ are non negative.
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Based on algorithm for class C* by Busic and Pekergin

two extensions: a row partition and a column partition (both in the

papers)

e Only the row partition is presented.
1 0 0 ... 0
1 1 0 ... O
o Kst p— ]_ 1 1 . . O
101 1 1
PRiSM ANR 12 MONU-0019 and Project CNRS-CNRST

(18 /27]



4 N

Require: P.
Ensure: monotone upper bound in class C¢ described by (v, 7, ¢c).
1: Compute with Vincent’s algorithm max, the maximum for the strong
stochastic ordering of the rows of P.
v = PJ[1, *|;
c = mazr — v;
r[N] =1 ; r[1]=0.
w = vKgt; 2 = cKg;
for j=2to N —-1do
s = Plj, x| Kgt
hlj) = Maa. 5o gt
rlj] = max(hlj], rlj —1])
end for

[
<

PRASM ANR 12 MONU-0019 and Project CNRS-CNRST 119/27]



| Intuition I

e the bounding matrix as the same first row and the same last row as
the bound provided by Vincent’s algorithm.

e The first row is equal to the first row of the initial matrix (Instruction
1) and the last row is max, the maximum for the stochastic ordering.

e The rows between 2 and N — 1 are linear interpolation larger (with the
stochastic ordering) than the corresponding row in the initial matrix.

e Instruction 9) makes the matrix stochastic monotone.
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0.1
0.2
0.1
0
0.1
0.1

0.2 0.2 0.3 0.1
0.3 0.2 0 0.2
0.1 0.2 0.3 0.1
0.5 0 0.2 0.2
0.3 0.1 0.2 0.3
0.1 0.4 0.2 0.1

Vector v is [0.1,0.1,0.2,0.2,0.3,0.1]. We use Vincent’a algorithm to
compute mazx = [0,0.1,0.3,0.1,0.2,0.3]. Vector c is
-0.1,0,0.1, —0.1, —0.1,0.2].

h[2] = maz(0/0.1,—0.1/0.1,—0.2/0.1,0.1/0.2) = 0.5,

h[3] = maz(—0.1/0.1,—0.1/0.1,0/0.1,0/0.1) = 0.0,

+

Finally » = [0,0.5,0.5,1, 1, 1]. The decomposition of the upper bound is:

e!10.1,0.1,0.2,0.2,0.3,0.1]
0,0.5,0.5,1,1,1]%[-0.1,0,0.1, —0.1, —0.1, 0.2],
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or with an explicit form:

0.1 0.1 0.2 0.2 0.3 0.1
0.05 0.1 0.25 0.15 0.25 0.2
0.05 0.1 0.25 0.15 0.25 0.2
0 0.1 0.3 0.1 0.2 0.3
0 0.1 0.3 0.1 0.2 0.3

| 0 0.1 0.3 0.1 0.2 0.3 _]

For the sake of comparison, we also give the bounds provided by Vincent’s

algorithm:

~ 0.1 0.1 0.2 0.2 0.3 0.1 7
0.1 0.1 0.2 0.2 0.2 0.2
0.1 0.1 0.2 0.2 0.2 0.2
0.1 0 0.3 0.2 0.2 0.2
0 0.1 0.3 0.1 0.2 0.3

L 0.1 0.3 0.1 0.2 0.3 |
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The bound given by the initial Algorithm is the rank 1 matrix, with

the rows that are convex combinations of the first and the last row of

matrix Q.

The main idea of the new Algorithm is to construct an upper bound of

rank k, using additional £ — 1 rows of matrix Q.
2 rows (first and last) + k-1 rows chosen by you.

Use the initial algorithm between rows [; and ;1.
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Require: P; 1 =1 <ls < ... <l <lps1 = N.
Ensure: monotone upper bound R.
1: Compute Q with Vincent’s Algorithm.
2: v; = Qll;, x| for all i
3: fort:=1to k do
4:  ¢; =011 —V; 5 2= Kgt ; w=v;Kgt
r;|j] = 0 for all j from 1 to [;
for j =10, +1tol;x1 —1do
s = Plj, *|Kg¢;
hiljl = Max[m)>0

slm]—w[m] .
z[m] 7

rilj] = max(hi|j], 7[5 — 1))
10: end for

11: for j=1;,41 to N do

12: rilj] =1

13:  end for

kM: end for /
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| Main Result I

Property 7 For a stochastic matrix P let Q be the bound obtained by
Vincent’s Algorithm and R the bound obtained by the new Algorithm.

1. R is a monotone upper bound of matrix P with a rank k decomposition.

2. R 1s stochastically smaller than the matrix computed by the initial
Algorithm.

3. Rows 1 =11 <ls <...<lp <lpy1 = N satisfy Rll;, *] = Qll;, *]. Rows
l; < g <l;x1 of the bound R are convex combinations of row l; and
lir1 of matriz Q.

4. The bounding matriz R obtained using I" = {ly,...,l}, } such that
[ C U, is stochastically smaller than R. Forl={1,...,N}, R=Q.

\_ /
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Set k=2 and [ = (1,3,6). We get
¢y =10,0,0,0,-0.1,0.1] and ¢ =[-0.1,0,0,0,0,0.1].

The bound is: i )
0.1 0.1 0.2 0.2 03 0.1
0.1 0.1 0.2 0.2 0.2 0.2
0.1 0.1 0.2 0.2 0.2 0.2
O 01 03 0.1 0.2 0.3
O 01 03 0.1 02 0.3
O 0.1 03 0.1 0.2 0.3
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What about the distribution of the first passage time (already known

for class C%) ?

CTMC ?

Lower Bounds

Links with SVD

Links with Perfect Simulation

Links with Mixing Time
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