Low Rank Decomposition and Stochastic Bounds

J.M. Fourneau

Laboratoire PRiSM, CNRS UMR 8144

Université de Versailles St-Quentin

Joint Work with A. Busic (INRIA DIOGENE and ENS ULM) and M. Ben Mamoun (Univ. Mohammed V, Rabat)

Outline

- Class C and G DTMC
- Low Rank Decomposition of a Markov Chain
- Computation of the steady-state distribution
- Computation of the transient distribution
- Stochastic Bound of an arbitrary DTMC by a DTMC with a low rank decomposition
- All vectors are row vectors.

Class C matrix

Definition 1 A class \mathbf{C} stochastic matrix \mathbf{P} is defined by 2 vectors v and c such that:

$$\mathbf{P} = [1, 1, 1, \dots, 1]^T v + [0, 1, 2, \dots, n-1]^T c,$$

where v is a positive vector whose norm is equal to 1, c is a vector whose entries sum up to 0.

Class C^G matrix

Definition 2 A class $\mathbf{C}^{\mathbf{G}}$ stochastic matrix \mathbf{P} is defined by 3 vectors (v, r, c) such that:

$$\mathbf{P} = e^T v + r^T c,$$

where e is a vector whose all entries are equal to 1, v is a positive vector whose norm is equal to 1, c is a vector whose entries sum up to 0 and e^{T} is the transpose of e.

Exemple

Example 1 Consider the following class C^{G} matrix:

$$M = [1111]^{T} [0.2, 0.1, 0.4, 0.3] + [0, 1, 1, 2]^{T} [0.1, -0.05, 0.05, -0.1].$$

M is equal to:

PR

$$\begin{bmatrix} 0.2 & 0.1 & 0.4 & 0.3 \\ 0.2 & 0.1 & 0.4 & 0.3 \\ 0.2 & 0.1 & 0.4 & 0.3 \\ 0.2 & 0.1 & 0.4 & 0.3 \end{bmatrix} + \begin{bmatrix} 0. & 0. & 0. & 0. \\ 0.1 & -0.05 & 0.05 & -0.1 \\ 0.1 & -0.05 & 0.05 & -0.1 \\ 0.2 & -0.1 & 0.1 & -0.2 \end{bmatrix}$$

Finally,

PRUSM

$$M = \begin{bmatrix} 0.2 & 0.1 & 0.4 & 0.3 \\ 0.3 & 0.05 & 0.45 & 0.2 \\ 0.3 & 0.05 & 0.45 & 0.2 \\ 0.4 & 0.0 & 0.5 & 0.1 \end{bmatrix}$$

Low Rank Decomposition

Definition 3 We consider the set A_k of stochastic matrices M defined by:

$$\mathbf{M} = e^T v + \sum_{i=1}^k r_i^T c_i,$$

where c_i are vectors whose entries sum up to 0 and r_i are vectors such that $r_i[j] \leq 1$ for all *i* and *j*. We say that a matrix in \mathcal{A}_k has a decomposition of rank *k*. When vectors c_i are non zero and independent and similar conditions hold for vectors r_i , we say that matrix has a full rank *k* decomposition.

Property 1 Matrices in A_k have rank upmost k+1

PRUS

Implications

- Computing the steady state distribution: linear time algorithm
- Computing the transient distribution: easier algorithm
- Computing the distribution of the first passage time

PRASM

• We generalize the first two properties to matrices with a low rank decomposition.

Simplification rules

- For all x, y z row vectors with the same size, $xy^T z = zxy^T$ as xy^T is a scalar.
- Furthermore by construction $ve^T = 1$ for all i.
- and $c_i e^T = 0$ for all i

Steady-State

• Let us define matrix \mathbf{A} by $\mathbf{A}[i, l] = c_l r_i^T$.

PRASN

• **Property 2** If matrix (Id - A) is not singular, then the stationary distribution of an ergodic DTMC M in A_k is given as follows:

$$\pi_{\mathbf{M}} = v + \sum_{i=1}^{k} E[r_i]c_i, \qquad (1)$$

where the values of $E[r_i]$ which represent the expectations of r_i on the steady-state distribution $\pi_{\mathbf{M}}$ can be solved from a linear system of size k.

$$E[r_i] = \sum_{j} r_i[j]v[j] + \sum_{l=1}^{k} E[r_l] \sum_{j} r_i[j]c_l[j].$$

- Note that we compute the expectations $E[r_i]$ before we compute the steady-state distributions and we do not need these distributions to compute the expectations due to the properties of the matrix.
- **Property 3** The complexity for computing the steady state distribution is $O(k^2N)$.
- Example 2 Consider matrix M whose decomposition of rank 2 is:

 $[1, 1, 1, 1, 1, 1, 1]^T$ [0.1, 0.2, 0.1, 0.1, 0.1, 0, 0.2, 0.2]

+ $[0, 0.01, 0.01, 0.1, 0.1, 0.2, 0.5, 0.5]^T$ [-0.05, -0.05, -0.1, 0.2, 0, 0, 0, 0]

+
$$[0, 0.5, 1, 0, 1, 0, 1, 0]^T$$

 $[0, 0, 0, 0, -0.1, 0.1, -0.1, 0.1].$

ANR 12 MONU-0019 and Project CNRS-CNRST

PRUSM

Solution of the Exemple

• Matrix **A** is readily computed:
$$\begin{bmatrix} 0.0185 & -0.125 \\ -0.01 & -0.2 \end{bmatrix}$$

• and V is [0.223, 0.5].

PRASM

- Therefore E = [0.2312031, 0.3925830]
- the steady state distribution of the matrix is:

v + 0.2312031 * c1 + 0.392583 * c2.

• One finally get that this distribution is:

[0.0884, 0.1884, 0.0769, 0.1462, 0.0608, 0.0393, 0.1607, 0.2393].

Transient Distribution

Property 4 The transient distribution at discrete time n of a DTMC **M** in \mathcal{A}_k is given $\pi_{\mathbf{M}}^{(n)} = \pi_{\mathbf{M}}^{(0)} \mathbf{M}^n$ where \mathbf{M}^n is given by:

$$\mathbf{M}^{n} = e^{T}v + \sum_{i=1}^{k} (s_{i}^{n})^{T}c_{i}, \qquad (2)$$

where the s_i^n are given by the following induction:

$$\begin{bmatrix} s_i^1 &= r_i \\ s_i^{n+1} &= v(s_i^n)^T e + \sum_j c_j (s_j^n)^T r_j \end{bmatrix}$$

Lower Complexity.

PRASM

Approximation of a matrix by a low rank matrix

• Singular Value Decomposition of a matrix $m \times n$ (A).

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T,$$

where $\mathbf{S} = diag(\sigma_1, \sigma_2, \dots, \sigma_r, 0, \dots, 0)$, such that the singular values are ordered in decreasing order. r is the rank of \mathbf{A} .

- U and V are both orthogonal matrices (resp. $(m \times m)$ and $n \times n$) and satisfy $\mathbf{A}v_i^T = \sigma_i u_i^T$ and $u_i A = v_i^T \sigma_i$ for all *i*.
- u_i are the left singular vectors. v_i are the right singular vectors, σ_i are the singular values.

Approximation of a matrix

• Eckart et Young (36): the best rank k approximation for the Frobenius norm.

Theorem 1 A best rank k approximation of \mathbf{A} is given by zeroing the r - k trailing singular values of \mathbf{A} , i.e.

$$\hat{\mathbf{A}}_k = \mathbf{U}\hat{\mathbf{S}}_k\mathbf{V}^T,$$

where $\hat{\mathbf{S}}_k = diag(\sigma_1, \sigma_2, \dots, \sigma_k, 0, \dots, 0)$, and the Frobenius norm of the difference is given by the Euclidean norm of the singular values which have been zeroed.

$$||\mathbf{A} - \hat{\mathbf{A}}_k||_F = \sqrt{\sigma_{k+1}^2 + \ldots + \sigma_r^2}$$

• where
$$||\mathbf{A}||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{i,j}^2} = \sqrt{\sum_{l=1}^{\min(m,n)} \sigma_l^2}$$
.

Yes but we do not do that...

- because of the complexity: i.e. $O(n \times m \times min(n,m))$.
- Instead we compute a monotone upper bound (for the stochastic ordering of the initial matrix)
- Gives a stochastic bound on the steady-state and transient distribution
- Provides a bound on the expectation of any non decreasing reward on the distributions.

PRUSM

Stochastic Monotonicity

Property 5 A matrix of class C^{G} is stochastically monotone if r is non decreasing and cK_{st} is non negative.

Property 6 Generalization rank k: If the following conditions hold, the matrix \mathbf{P} is st-monotone:

1. for all i, the vector r_i is non decreasing.

PRIS

2. for all i, the vectors $c_i K_{st}$ are non negative.

Monotone stochastic bounds with a low rank

- Based on algorithm for class $\mathbf{C}^{\mathbf{G}}$ by Busic and Pekergin
- two extensions: a row partition and a column partition (both in the papers)
- Only the row partition is presented.

•
$$\mathbf{K_{st}} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 1 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix}$$

PRASM

Monotone Upper Bound in Class C^G

Require: P.

PRASM

Ensure: monotone upper bound in class $\mathbf{C}^{\mathbf{G}}$ described by (v, r, c).

1: Compute with Vincent's algorithm max, the maximum for the strong stochastic ordering of the rows of **P**.

2:
$$v = \mathbf{P}[1, *];$$

3: $c = max - v;$
4: $r[N] = 1 ; r[1]=0.$
5: $w = v\mathbf{K_{st}}; z = c\mathbf{K_{st}};$
6: for $j = 2$ to $N - 1$ do
7: $s = \mathbf{P}[j, *]\mathbf{K_{st}}$
8: $h[j] = Max_{z[k]>0} \frac{s[k] - w[k]}{z[k]}$
9: $r[j] = max(h[j], r[j - 1])$
10: end for

Intuition

- the bounding matrix as the same first row and the same last row as the bound provided by Vincent's algorithm.
- The first row is equal to the first row of the initial matrix (Instruction 1) and the last row is *max*, the maximum for the stochastic ordering.
- The rows between 2 and N-1 are linear interpolation larger (with the stochastic ordering) than the corresponding row in the initial matrix.
- Instruction 9) makes the matrix stochastic monotone.

PRASN

	0.1	0.1	0.2	0.2	0.3	0.1	٦
	0.1	0.2	0.3	0.2	0	0.2	
р_	0.2	0.1	0.1	0.2	0.3	0.1	l
F —	0.1	0	0.5	0	0.2	0.2	
	0	0.1	0.3	0.1	0.2	0.3	
	0.1	0.1	0.1	0.4	0.2	0.1	

PRASM

Vector v is [0.1, 0.1, 0.2, 0.2, 0.3, 0.1]. We use Vincent'a algorithm to compute max = [0, 0.1, 0.3, 0.1, 0.2, 0.3]. Vector c is [-0.1, 0, 0.1, -0.1, -0.1, 0.2].

$$h[2] = max(0/0.1, -0.1/0.1, -0.2/0.1, 0.1/0.2) = 0.5,$$

$$h[3] = max(-0.1/0.1, -0.1/0.1, 0/0.1, 0/0.1) = 0.0,$$

Finally r = [0, 0.5, 0.5, 1, 1, 1]. The decomposition of the upper bound is:

$$e^{T}[0.1, 0.1, 0.2, 0.2, 0.3, 0.1] + [0, 0.5, 0.5, 1, 1, 1]^{T}[-0.1, 0, 0.1, -0.1, -0.1, 0.2],$$

or with an explicit form:

Г	0.1	0.1	0.2	0.2	0.3	0.1	1
	0.05	0.1	0.25	0.15	0.25	0.2	
	0.05	0.1	0.25	0.15	0.25	0.2	
	0	0.1	0.3	0.1	0.2	0.3	·
	0	0.1	0.3	0.1	0.2	0.3	
L	0	0.1	0.3	0.1	0.2	0.3	

For the sake of comparison, we also give the bounds provided by Vincent's algorithm:

0.1	0.1	0.2	0.2	0.3	0.1	
0.1	0.1	0.2	0.2	0.2	0.2	
0.1	0.1	0.2	0.2	0.2	0.2	
0.1	0	0.3	0.2	0.2	0.2	
0	0.1	0.3	0.1	0.2	0.3	
0	0.1	0.3	0.1	0.2	0.3	

PRASM

A generalization based on row selection

- The bound given by the initial Algorithm is the rank 1 matrix, with the rows that are convex combinations of the first and the last row of matrix \mathbf{Q} .
- The main idea of the new Algorithm is to construct an upper bound of rank k, using additional k 1 rows of matrix \mathbf{Q} .
- 2 rows (first and last) + k-1 rows chosen by you.
- Use the initial algorithm between rows l_i and l_{i+1} .

PRIS

Require: P; $1 = l_1 < l_2 < \ldots < l_k < l_{k+1} = N$. Ensure: monotone upper bound **R**.

2:
$$v_i = \mathbf{Q}[l_i, *]$$
 for all i

3: for
$$i = 1$$
 to k do

4:
$$c_i = v_{i+1} - v_i \ ; \ z = c_i \mathbf{K_{st}} \ ; \ w = v_i \mathbf{K_{st}}$$

5:
$$r_i[j] = 0$$
 for all j from 1 to l_i

6: **for**
$$j = l_i + 1$$
 to $l_{i+1} - 1$ **do**

7:
$$s = \mathbf{P}[j, *]\mathbf{K_{st}};$$

8:
$$h_i[j] = Max_{z[m]>0} \frac{s[m] - w[m]}{z[m]}$$
;

9:
$$r_i[j] = max(h_i[j], r_i[j-1])$$

10: **end for**

11: **for**
$$j = l_{i+1}$$
 to *N* **do**

12:
$$r_i[j] = 1$$

13: **end for**

14: **end for**

Main Result

Property 7 For a stochastic matrix \mathbf{P} let \mathbf{Q} be the bound obtained by Vincent's Algorithm and \mathbf{R} the bound obtained by the new Algorithm.

- 1. **R** is a monotone upper bound of matrix **P** with a rank k decomposition.
- 2. **R** is stochastically smaller than the matrix computed by the initial Algorithm.
- 3. Rows $1 = l_1 < l_2 < \ldots < l_k < l_{k+1} = N$ satisfy $\mathbf{R}[l_i, *] = \mathbf{Q}[l_i, *]$. Rows $l_i < j < l_{i+1}$ of the bound \mathbf{R} are convex combinations of row l_i and l_{i+1} of matrix \mathbf{Q} .
- 4. The bounding matrix \mathbf{R}' obtained using $l' = \{l'_1, \ldots, l'_{k'+1}\}$ such that $l \subset l'$, is stochastically smaller than \mathbf{R} . For $l = \{1, \ldots, N\}$, $\mathbf{R} = \mathbf{Q}$.

ANR 12 MONU-0019 and Project CNRS-CNRST

PRISM

Same Matrix

Set k = 2 and l = (1, 3, 6). We get

 $c_1 = [0, 0, 0, 0, -0.1, 0.1]$ and $c_2 = [-0.1, 0, 0, 0, 0, 0.1].$

The bound is:

PROSM

0.1	0.1	0.2	0.2	0.3	0.1
0.1	0.1	0.2	0.2	0.2	0.2
0.1	0.1	0.2	0.2	0.2	0.2
0	0.1	0.3	0.1	0.2	0.3
0	0.1	0.3	0.1	0.2	0.3
0	0.1	0.3	0.1	0.2	0.3

Conclusion

- What about the distribution of the first passage time (already known for class $\mathbf{C}^{\mathbf{G}}$) ?
- CTMC ?

- Lower Bounds
- Links with SVD
- Links with Perfect Simulation
- Links with Mixing Time