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Outline

• Class C and G DTMC

• Low Rank Decomposition of a Markov Chain

• Computation of the steady-state distribution

• Computation of the transient distribution

• Stochastic Bound of an arbitrary DTMC by a DTMC with a low rank
decomposition

• All vectors are row vectors.
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Class C matrix

Definition 1 A class C stochastic matrix P is defined by 2 vectors v and
c such that:

P = [1, 1, 1, . . . , 1]T v + [0, 1, 2, . . . , n − 1]T c,

where v is a positive vector whose norm is equal to 1, c is a vector whose
entries sum up to 0 .
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Class CG matrix

Definition 2 A class CG stochastic matrix P is defined by 3 vectors
(v, r, c) such that:

P = eT v + rT c,

where e is a vector whose all entries are equal to 1, v is a positive vector
whose norm is equal to 1, c is a vector whose entries sum up to 0 and eT is
the transpose of e.
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Exemple

Example 1 Consider the following class CG matrix:

M = [1111]T [0.2, 0.1, 0.4, 0.3]

+ [0, 1, 1, 2]T [0.1,−0.05, 0.05,−0.1].

M is equal to:
0.2 0.1 0.4 0.3

0.2 0.1 0.4 0.3

0.2 0.1 0.4 0.3

0.2 0.1 0.4 0.3

 +


0. 0. 0. 0.

0.1 −0.05 0.05 −0.1

0.1 −0.05 0.05 −0.1

0.2 −0.1 0.1 −0.2
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Finally,

M =


0.2 0.1 0.4 0.3

0.3 0.05 0.45 0.2

0.3 0.05 0.45 0.2

0.4 0.0 0.5 0.1
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Low Rank Decomposition

Definition 3 We consider the set Ak of stochastic matrices M defined by:

M = eT v +
k∑

i=1

rT
i ci,

where ci are vectors whose entries sum up to 0 and ri are vectors such that
ri[j] ≤ 1 for all i and j. We say that a matrix in Ak has a decomposition
of rank k. When vectors ci are non zero and independent and similar
conditions hold for vectors ri, we say that matrix has a full rank k

decomposition.

Property 1 Matrices in Ak have rank upmost k + 1
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Implications

• Computing the steady state distribution: linear time algorithm

• Computing the transient distribution: easier algorithm

• Computing the distribution of the first passage time

• We generalize the first two properties to matrices with a low rank
decomposition.
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Simplification rules

• For all x, y z row vectors with the same size, xyT z = zxyT as xyT is a
scalar.

• Furthermore by construction veT = 1 for all i.

• and cie
T = 0 for all i
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Steady-State

• Let us define matrix A by A[i, l] = clr
T
i .

• Property 2 If matrix (Id − A) is not singular, then the stationary
distribution of an ergodic DTMC M in Ak is given as follows:

πM = v +
k∑

i=1

E[ri]ci, (1)

where the values of E[ri] which represent the expectations of ri on the
steady-state distribution πM can be solved from a linear system of size
k.

E[ri] =
∑

j

ri[j]v[j] +
k∑

l=1

E[rl]
∑

j

ri[j]cl[j].
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• Note that we compute the expectations E[ri] before we compute the
steady-state distributions and we do not need these distributions to
compute the expectations due to the properties of the matrix.

• Property 3 The complexity for computing the steady state
distribution is O(k2N).

• Example 2 Consider matrix M whose decomposition of rank 2 is:

[1, 1, 1, 1, 1, 1, 1, 1]T

[0.1, 0.2, 0.1, 0.1, 0.1, 0, 0.2, 0.2]

+ [0, 0.01, 0.01, 0.1, 0.1, 0.2, 0.5, 0.5]T

[−0.05,−0.05,−0.1, 0.2, 0, 0, 0, 0]

+ [0, 0.5, 1, 0, 1, 0, 1, 0]T

[0, 0, 0, 0,−0.1, 0.1,−0.1, 0.1].
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Solution of the Exemple

• Matrix A is readily computed:

 0.0185 −0.125

−0.01 −0.2

 ,

• and V is [0.223, 0.5].

• Therefore E = [0.2312031, 0.3925830]

• the steady state distribution of the matrix is:

v + 0.2312031 ∗ c1 + 0.392583 ∗ c2.

• One finally get that this distribution is:

[0.0884, 0.1884, 0.0769, 0.1462, 0.0608, 0.0393, 0.1607, 0.2393].
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Transient Distribution

Property 4 The transient distribution at discrete time n of a DTMC M
in Ak is given π

(n)
M = π

(0)
M Mn where Mn is given by:

Mn = eT v +
k∑

i=1

(sn
i )T ci, (2)

where the sn
i are given by the following induction: s1

i = ri

sn+1
i = v(sn

i )T e +
∑

j cj(sn
j )T rj

Lower Complexity.
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Approximation of a matrix by a low rank matrix

• Singular Value Decomposition of a matrix m × n (A).

A = USVT ,

where S = diag(σ1, σ2, . . . , σr, 0, . . . , 0), such that the singular values
are ordered in decreasing order. r is the rank of A.

• U and V are both orthogonal matrices (resp. (m × m) and n × n) and
satisfy AvT

i = σiu
T
i and uiA = vT

i σi for all i.

• ui are the left singular vectors. vi are the right singular vectors, σi are
the singular values.
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Approximation of a matrix

• Eckart et Young (36): the best rank k approximation for the Frobenius
norm.

Theorem 1 A best rank k approximation of A is given by zeroing the
r − k trailing singular values of A, i.e.

Âk = UŜkVT ,

where Ŝk = diag(σ1, σ2, . . . , σk, 0, . . . , 0), and the Frobenius norm of
the difference is given by the Euclidean norm of the singular values
which have been zeroed.

||A − Âk||F =
√

σ2
k+1 + . . . + σ2

r

• where ||A||F =
√∑m

i=1

∑n
j=1 a2

i,j =
√∑min(m,n)

l=1 σ2
l .
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Yes but we do not do that...

• because of the complexity: i.e. O(n × m × min(n,m)).

• Instead we compute a monotone upper bound (for the stochastic
ordering of the initial matrix)

• Gives a stochastic bound on the steady-state and transient distribution

• Provides a bound on the expectation of any non decreasing reward on
the distributions.
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Stochastic Monotonicity

Property 5 A matrix of class CG is stochastically monotone if r is non
decreasing and cKst is non negative.

Property 6 Generalization rank k: If the following conditions hold, the
matrix P is st-monotone:

1. for all i, the vector ri is non decreasing.

2. for all i, the vectors ciKst are non negative.

ANR 12 MONU-0019 and Project CNRS-CNRST [17/27]



Monotone stochastic bounds with a low rank

• Based on algorithm for class CG by Busic and Pekergin

• two extensions: a row partition and a column partition (both in the
papers)

• Only the row partition is presented.

• Kst =



1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1
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Monotone Upper Bound in Class CG

Require: P.
Ensure: monotone upper bound in class CG described by (v, r, c).
1: Compute with Vincent’s algorithm max, the maximum for the strong

stochastic ordering of the rows of P.
2: v = P[1, ∗];
3: c = max − v;
4: r[N] = 1 ; r[1]=0.
5: w = vKst; z = cKst;
6: for j = 2 to N − 1 do
7: s = P[j, ∗]Kst

8: h[j] = Maxz[k]>0
s[k]−w[k]

z[k]

9: r[j] = max(h[j], r[j − 1])
10: end for
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Intuition

• the bounding matrix as the same first row and the same last row as
the bound provided by Vincent’s algorithm.

• The first row is equal to the first row of the initial matrix (Instruction
1) and the last row is max, the maximum for the stochastic ordering.

• The rows between 2 and N − 1 are linear interpolation larger (with the
stochastic ordering) than the corresponding row in the initial matrix.

• Instruction 9) makes the matrix stochastic monotone.
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P =


0.1 0.1 0.2 0.2 0.3 0.1

0.1 0.2 0.3 0.2 0 0.2

0.2 0.1 0.1 0.2 0.3 0.1

0.1 0 0.5 0 0.2 0.2

0 0.1 0.3 0.1 0.2 0.3

0.1 0.1 0.1 0.4 0.2 0.1


Vector v is [0.1, 0.1, 0.2, 0.2, 0.3, 0.1]. We use Vincent’a algorithm to
compute max = [0, 0.1, 0.3, 0.1, 0.2, 0.3]. Vector c is
[−0.1, 0, 0.1,−0.1,−0.1, 0.2].

h[2] = max(0/0.1,−0.1/0.1,−0.2/0.1, 0.1/0.2) = 0.5,

h[3] = max(−0.1/0.1,−0.1/0.1, 0/0.1, 0/0.1) = 0.0,

Finally r = [0, 0.5, 0.5, 1, 1, 1]. The decomposition of the upper bound is:

eT [0.1, 0.1, 0.2, 0.2, 0.3, 0.1]

+ [0, 0.5, 0.5, 1, 1, 1]T [−0.1, 0, 0.1,−0.1,−0.1, 0.2],
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or with an explicit form:
0.1 0.1 0.2 0.2 0.3 0.1

0.05 0.1 0.25 0.15 0.25 0.2

0.05 0.1 0.25 0.15 0.25 0.2

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3

 .

For the sake of comparison, we also give the bounds provided by Vincent’s
algorithm:

0.1 0.1 0.2 0.2 0.3 0.1

0.1 0.1 0.2 0.2 0.2 0.2

0.1 0.1 0.2 0.2 0.2 0.2

0.1 0 0.3 0.2 0.2 0.2

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3

 .
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A generalization based on row selection

• The bound given by the initial Algorithm is the rank 1 matrix, with
the rows that are convex combinations of the first and the last row of
matrix Q.

• The main idea of the new Algorithm is to construct an upper bound of
rank k, using additional k − 1 rows of matrix Q.

• 2 rows (first and last) + k-1 rows chosen by you.

• Use the initial algorithm between rows li and li+1.
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Require: P; 1 = l1 < l2 < . . . < lk < lk+1 = N .
Ensure: monotone upper bound R.
1: Compute Q with Vincent’s Algorithm.
2: vi = Q[li, ∗] for all i

3: for i = 1 to k do
4: ci = vi+1 − vi ; z = ciKst ; w = viKst

5: ri[j] = 0 for all j from 1 to li

6: for j = li + 1 to li+1 − 1 do
7: s = P[j, ∗]Kst;
8: hi[j] = Maxz[m]>0

s[m]−w[m]
z[m] ;

9: ri[j] = max(hi[j], ri[j − 1])
10: end for
11: for j = li+1 to N do
12: ri[j] = 1
13: end for
14: end for
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Main Result

Property 7 For a stochastic matrix P let Q be the bound obtained by
Vincent’s Algorithm and R the bound obtained by the new Algorithm.

1. R is a monotone upper bound of matrix P with a rank k decomposition.

2. R is stochastically smaller than the matrix computed by the initial
Algorithm.

3. Rows 1 = l1 < l2 < . . . < lk < lk+1 = N satisfy R[li, ∗] = Q[li, ∗]. Rows
li < j < li+1 of the bound R are convex combinations of row li and
li+1 of matrix Q.

4. The bounding matrix R′ obtained using l′ = {l′1, . . . , l′k′+1} such that
l ⊂ l′, is stochastically smaller than R. For l = {1, . . . , N}, R = Q.
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Same Matrix

Set k = 2 and l = (1, 3, 6). We get

c1 = [0, 0, 0, 0,−0.1, 0.1] and c2 = [−0.1, 0, 0, 0, 0, 0.1].

The bound is: 

0.1 0.1 0.2 0.2 0.3 0.1

0.1 0.1 0.2 0.2 0.2 0.2

0.1 0.1 0.2 0.2 0.2 0.2

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3
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Conclusion

• What about the distribution of the first passage time (already known
for class CG) ?

• CTMC ?

• Lower Bounds

• Links with SVD

• Links with Perfect Simulation

• Links with Mixing Time
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